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Motivation

Velocity and vorticity (i.e. rotation) offer interchangeable approaches to study-
ing wave dynamics in a fluid. However, both velocity and vorticity are vector
quantities, thus accounting for the full budget of either quantity can become
rather complicated. To simplify this problem we can compress the information
in the velocity vector into a scalar kinetic energy, which has a single budget
equation that is useful for understanding the flow of energy in a system, as
well as wave dynamics. We can make a similar simplification of the vorticity
vector the obtain a scalar measure of rotational energy, known as enstrophy.
Understanding fluid flows in terms of vorticity, instead of velocity, can yield
some unique insights, and so the enstrophy budget provides a useful perspec-
tive. In particular, the eddy enstrophy budget can be a useful way to analyze
how diabatic heating from things like convection and radiation affect wave dy-
namics. The potential vorticity and potential enstrophy budgets are also useful
to consider, but these are not discussed here.

The following discussion outlines the derivation of the perturbation enstrophy
budget. The term ”perturbation” indicates either anomalies relative to a tem-
poral average, or high frequency fluctuations relative to a low frequency ”back-
ground” state that would be produced with a temporal filter.

The Isobaric Vorticity Budget

Consider the equations for horizontal momentum on isobaric surfaces,

∂~v

∂t
+ ~u · ∇~v + fk̂ × ~v +∇sΦ = ~F , (1)
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where ~v = (u, v, 0) is the horizontal wind, ~u = (u, v, w) is the total wind, f is
the coriolis parameter, and Φ = gz is the geopotential height above mean sea
level. The vector ~F represents mechanical forcing.

We can define the hydrostatic relative vorticity as,

~ζ = ∇× ~v = −î ∂v
∂p

+ ĵ
∂u

∂p
+ k̂

[
∂v

∂x
− ∂u

∂y

]
. (2)

Using the following vector identity,

~u× (∇× ~v) = ∇
(
~v · ~v

2

)
− ~u · ∇~v = −~ζ × ~u, (3)

we can rewrite (1) as

∂~v

∂t
+ ~ζ × ~u+∇

(
~v · ~v

2

)
+ fk̂ × ~v +∇sΦ = ~F . (4)

Defining the absolute vorticity ζa = ~ζ + f and recognizing that fk̂×~v = fk̂× ~u
we can simplify (4).

∂~v

∂t
+ ~ζa × ~u+∇

(
~v · ~v

2

)
+∇sΦ = ~F . (5)

We can now construct the vorticity equation by taking the curl of (5). Note
that the curl of a divergence is zero so the third and forth terms immediately
drops out.

∂ (∇× ~v)

∂t
+∇×

(
~ζa × ~u

)
= ∇× ~F . (6)

The second term can be expanded,

∇×
(
~ζa × ~u

)
= (~u · ∇) ~ζa −

(
~ζa · ∇

)
~u+ ~ζa∇ · ~u− ~u

(
∇ · ~ζa

)
, (7)

but since the total wind and absolute vorticity are non-divergent we can imme-
diately simplify this to,

∇×
(
~ζa × ~u

)
= (~u · ∇) ~ζa −

(
~ζa · ∇

)
~u (8)

Making this substitution and recognizing that ∂f
∂t = 0 allows us to rewrite (6)

as,

∂~ζa
∂t

+ (~u · ∇) ~ζa =
(
~ζa · ∇

)
~u+∇× ~F , (9)

which is the final isobaric vorticity equation. The first term on the right hand
side contains the effects of stretching and tilting. Most often we are only inter-
ested in the vertical component of absolute vorticity (ζz), which can be isolated
as,

∂ζz
∂t

+ ~u · ∇ζz = ζz
∂ω

∂p
−
(
k̂ · ∇ω × ∂~u

∂p

)
+
∂Fy

∂x
− ∂Fx

∂y
. (10)
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In a more computation-friendly notation we have,

∂ζz

∂t
+ ~u · ∇ζz = ζz

∂ω

∂p
−
(
∂v

∂p

∂ω

∂x
−
∂u

∂p

∂ω

∂y

)
+
∂Fy

∂x
−
∂Fx

∂y
. (11)

The Eddy Vorticity Budget

The budget of eddy vorticity can be obtained from (11) by separating each vari-
able into perturbations, indicated by a prime, and background states, indicated
by an overbar. Note that the time derivative of barred quantities are not zero,
as we want to allow for the barred quantities to represent low-frequency back-
ground states rather than a strict temporal average. Starting with the advection
terms, separating the perturbations gives,(

~u+ ~u′
)
· ∇
(
ζz + ζ ′z

)
= ~u · ∇ζz + ~u · ∇ζ ′z + ~u′ · ∇ζz + ~u′ · ∇ζ ′z. (12)

Similarly, we can expand the vortex stretching term,

(
ζz + ζ ′z

) ∂ (ω + ω′)

∂p
= ζz

∂ω

∂p
+ ζz

∂ω′

∂p
+ ζ ′z

∂ω

∂p
+ ζ ′z

∂ω′

∂p
(13)

Calculating the ”background state” of all terms leaves the background vorticity
balance,

∂ζz
∂t

+ ~u · ∇ζz + ~u′ · ∇ζ ′z =ζz
∂ω

∂p
+ ζ ′z

∂ω′

∂p

−
(
∂v

∂p

∂ω

∂x
+
∂v′

∂p

∂ω′

∂x
− ∂u

∂p

∂ω

∂y
− ∂u′

∂p

∂ω′

∂y

)
+
∂Fy

∂x
− ∂Fx

∂y
.

(14)

In some cases this operation will simply be the time mean, whereas in other
cases it may be more appropriate to use a low-pass filter. In the case of a low-
pass filter where the barred quantities retain a time dimension, we have omitted
some additional non-linear terms above. In practice these non-linear terms are
hard to interpret, and often have very small magnitudes, So unless a special
need arises to consider these terms, you shouldn’t feel bad about neglecting
them.
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Subtracting (14) from (11) gives the budget of eddy vorticity,

∂ζ′z
∂t

=− ~u′ · ∇ζz − ~u · ∇ζ′z −
(
~u′ · ∇ζ′z

)′
+ ζ′z

∂ω

∂p
+ ζz

∂ω′

∂p
+

(
ζ′z
∂ω′

∂p

)′

−
(
∂v′

∂p

∂ω

∂x
+
∂v

∂p

∂ω′

∂x
+

(
∂v′

∂p

∂ω′

∂x

)′

−
∂u′

∂p

∂ω

∂y
−
∂u

∂p

∂ω′

∂y
−
(
∂u′

∂p

∂ω′

∂y

)′)

+
∂F ′

y

∂x
−
∂F ′

x

∂y
.

(15)

The Eddy Enstrophy Budget

Enstrophy is a measure of rotational energy defined as square of the vorticity
divided by 2,

ξ =
ζ2

2
. (16)

Thus the budget of the vertical component of eddy enstrophy can be obtained
by multiplying (17) by the eddy vorticity, ζ′.

∂ξ′z
∂t

=− ζ′z~u
′ · ∇ζz − ~u · ∇ξ′z − ζ

′
z

(
~u′ · ∇ζ′z

)′
+ 2ξ′z

∂ω

∂p
+ ζ′zζz

∂ω′

∂p
+ ζ′z

(
ζ′z
∂ω′

∂p

)′

− ζ′z

(
∂v′

∂p

∂ω

∂x
+
∂v

∂p

∂ω′

∂x
+

(
∂v′

∂p

∂ω′

∂x

)′

−
∂u′

∂p

∂ω

∂y
−
∂u

∂p

∂ω′

∂y
−
(
∂u′

∂p

∂ω′

∂y

)′)

+ ζ′z
∂F ′

y

∂x
− ζ′z

∂F ′
x

∂y
.

(17)

The first advection term on the right hand side represents the exchange of enstro-
phy between the background flow and transient eddies, similar to the barotropic
energy conversion term found in the eddy kinetic energy budget. This term is
positive when the eddy vorticity flux is directed down the mean absolute vortic-
ity gradient. The second term represents advection of enstrophy perturbations
by the background flow. The third non-linear term in (17) represents perturba-
tion enstrophy advection by the transient eddies.

The second line includes two terms that describe the generation of enstrophy
by vortex stretching, which are important for considering the effects of diabatic
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heating. The second term involving the vertical derivative of vertical velocity
perturbations generally dominates over the first. The third non-linear term is
generally small.

The third line includes terms that describe the effects of tilting. All of these
terms are generally small compared to the advection and vortex stretching
terms. The final terms describe enstrophy generation or destruction by me-
chanical forcing such as surface friction and convective momentum transport.
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