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VI.—On Vortex Motion. By Sir W. THOMSON.

(Read 29th April 1867.)
(2 2 1-59 recast and augmented 28th August to 12th November 1868.)

1. The mathematical work of the present paper has been performed to illus-
trate the hypothesis, that space is continuously occupied by an incompressible
frictionless liquid acted on by no force, and that material phenomena of every
kind depend solely on motions created in this liquid. But I take, in the first
place, as subject of investigation, a finite mass of incompressible frictionless* fiuid
completely enclosed in a rigid fixed boundary.

2. The containing vessel may be either simply or multiply continuous.¥ And
I shall frequently consider solids surrounded by the liquid, which also may be
either simply or multiply continuous. It will not be necessary to exclude the sup-
position that any such solid may touch the outer boundary over some finite area,
in which case it is zot surrounded by the liquid ; but each such solid, whether
surrounded by the liquid or not, and whether moveable or fixed, must be con-
sidered as a part of the whole boundary of the liquid.

3. Let the whole fluid be given at rest, and let no force, except pressure from
the containing vessel, or from the surfaces of solids immersed in it, ever act on any
part of it. Let there be any number of solids, perfectly incompressible, and of the
same density as the fluid; but either perfectly rigid, or more or less flexible, with
perfect or imperfect elasticity. Some of these may at times be supposed to lose
rigidity, and become perfectly liquid ; and portions of the liquid may be supposed
to acquire rigidity, and thus to constitute solids. Let the solids act on one
another with any forces, pressures, frictions, or mutual distant actions, subject
only to the law of *action and reaction.” Let motions originate among them
and in the liquid, either by the natural mutual actions of the solids or by the
arbitrary application of forces to them during some limited time. It is of no
consequence to us whether these forces have reactions on matter outside the con-
taining vessel, so that they might be called ‘ natural forces” in the present state
of science (which admits action and reaction at a distance); or are applied
arbitrarily by supernatural action without reaction. To avoid circumlocution,

* A frictionless fluid is defined as a mass continuously occupying space, whose contiguous
portions press on one another everywhere exactly in the direction perpendicular to the surface
separating them.

1 HermuovLTz— Usher Integrale der kydrodynamzschen Glezchungen, welche den Wirbelbewegungen
entsprechen : Crelle (1858); translated by Tarr in Phil. Mag. 1867, i. RIeMaANN— Lehrsdize ous
der Analysis situs, §ec. Crelle (1857). See also § 58, below.
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and, at the same time, to conform to a common usage, we shall call them
Trans. Roy © .

impressed forces.
4. From the homogeneousness as to density of the contents of the fixed

~ bounding vessel, it follows that the centre of inertia of the whole system of liquid
L and solids immersed in it remains at rest; in other words, the integral momentum
of the motion is zero. Hence (THomso~N and Tarr’s “ Natural Philosophy,” § 297)
the time integral of the sum of the components of pressure on the containing
vessel, parallel to any fixed line, is equal to the time-integral of the sum of the com-
ponents of émpressed forces parallel to the same line. This equality exists, of
course, at each instant during the action of the impressed forces, and continues to
exist for the constant values of their time integrals, after they have ceased. Thus,
in the subsequent motion of the solids, and of the fluids compelled to yield to
them, whatever pressure may come to act on the containing vessel, whether from
the fluid or from some of the solids coming in contact with it, the components of
this pressure, parallel to any fixed line, summed for every element of the inner
surface of the vessel, must vanish for every interval of time during which no im-
pressed forcesact. If, for example, one of the solids strikes the containing vessel,
there will be an impulsive pressure of the fluid over all the rest of the fixed con-
taining surface, having the sum of its components parallel to any line, equal and
contrary* to the corresponding component of the impulsive pressure of the solid
on the part of this surface which it strikes [see § 8, and consider oblique impulse
of an inner moving solid, on the fixed solid spherical boundary]. But, after the
impressed forces cease to act, and as long as the containing vessel is not touched by
any of the solids, the inteqral amount of the component of jfluid pressure on it
parallel to any line, vanishes. ‘
5. If now forces be applied to stop the whole motion of fluid and solids [as
(§ 62) is done, if the solids are brought to rest by forces applied to themselves
only], the time integrals of the sums of the components of these forces, parallel
“to any stated lines, may or may not in general be equal and contrary to the time
integrals of the corresponding sums of componernts of the initiating impressed
forces (§3). DBut we shall see (§§ 19, 21), that if the containing vessel be infinitely
large, and all of the moving solids be infinitely distant from it during the whole
motion, there must be not merely the equality in question between the time
integrals of the components in contrary directions of the initiating and stopping
impressed forces, but there must be (§21) completely equilibrating opposition
betmween the tiwo systems.
6. To avoid circumlocution, henceforth I shall use the unqualified term émpulse
to signify a system of impulsive forces, to be dealt with as if acting on a rigid body.
Thus the most general impulse may be reduced to an impulsive force, and couple

* I shall use the word contrary to designate merely directional opposition; and reserve the
unqualified word oppostte, to signify contrary and in one line.
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in plane perpendicular to it, according to PoiNsor; or to two impulsive forces in
lines not meeting, according to his predecessors. Further, I shall designate by
the impulse of the motion at any instent, in our present subject, the system of
impulsive forces on the moveable sqlids which would generate it from rest; or
any other system which would be equivalent to that one if the solids were all
rigid and rigidly connected with one another, as, for instance, the Por~sor resultant
impulsive force and minimum couple. The line of this resultant impulsive force
will be called the resultant axis of the motion, and the moment of the minimum
couple (whose plane is perpendicular to this line) will be called the rofational
moment of the motion.

7. But, having thus defined the terms I intend to use, I must, to warn against
errors that might be fallen into, remark that the momentum of the whole motions
of solids and liquid is nof equal to what I have defined as the émpulse, but (§ 4) is
equal to zero; being the force-resultant of ¢ the impulse” and the impulsive
pressure exerted on the liquid by the containing vessel during the generation of the
motion: and that the moment of momentum of the whole motion round the centre
of inertia of the conrents of the vessel is not equal to the rotational moment, as 1
have defined it, but is equal to the moment of the couple constituted by * the
impulse” and the impulsive pressure of the containing vessel on the liquid. It
must be borne in mind that however large, and however distant all round from
the moveable solids, the containing vessel may be, it exercises a finite influence on
the momentum and moment of momentum of the whole motion within it. But if
it is infinitely large, and infinitely distant all round from the solids, it does so by
infinitely slow motion through an infinitely large mass of fluid, and exercises no
finite influence on the finite motion of the solids or of the neighbouring fluid. This
will be readily understood, if for an instant we suppose the rigid containing vessel
to be not fixed, but quite free to move as a rigid body without mass. The momentum
of the whole motion will then be not zero, but exactly equal to the force-resultant
of the impulse on the solids; and the moment of momentum of the whole motion
round the centre of inertia will be precisely equal to the resultant impulisive
couple found by transposing the constituent impulsive forces to this point after
the manner of PoinsoTr. But the finite motion of the immersed solids, and of the
fluid in their neighbourhood which we shall call the jield of motion, will not be
altered by any finite difference, whether the containing vessel be held fixed or
left free, provided it be infinitely distant from them all round. It is, therefore,
essentially indifferent whether we keep it fixed or let it be free. The former
supposition is more convenient in some respects, the latter in others; but it would
be inconvenient to leave any ambiguity, and I shall adhere (§ 1) to the former in
all that follows.

8. To further illustrate the impulse of the motion, and its resultant impulsive
force and couple, according to the previous definitions, as distinguished from
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the momentum, and the moment of momentum, of the whole contents of the
vessel, let the vessel be spherical. Its impulsive pressure on the liquid will
always be reducible to a single resultant in a line through its centre, which (§ 4)
will be equal and contrary to the force-resultant of ¢ the impulse;” and, therefore,
with it will constitute in general a couple. The resultant, of this couple and the
couple-resultant of the impulse, will be equal to the moment of momentum of the
whole motion round the centre of the sphere (which is the centre of inertia). But
if the vessel be infinitely large, and infinitely distant all round from the moveable
solids, the moment of momentum of the whole motion is irrelevant; and what
is essentially important, is the impulse and its force and couple-resultants, as
defined above.

9. The following way of stating (§§ 10, 12), and proving (§§ 11—15), a funda-
mental proposition in fluid motion will be useful to us for the theory of the
impulse, whether of the moveable solids we have hitherto considered or. of vortices.

10. The moment of momentum of every spherical portion of a liquid mass in
motion, relatively to the centre of the sphere, is always zero, if it is so at any one
instant for every spherical portion of the same mass.

11. To prove this, it is first to be remarked, that the moment of momentum
of that part of the liquid which at any instant occupies a certain fixed spherical
space can experience no change, at that instant (or its rate of change vanishes at,
that instant), because the fluid pressure on it (§ 1), being perpendicular to its
surface, is everywhere precisely towards its centre. Hence, if the moment of
momentum of the matter in the fixed spherical space varies, it must be by the
moment of momentum of the matter which enters it not balancing exactly that of
the matter which leaves it. We shall see later (§§ 20, 17, 18) that this balancing
is vitiated by the entry of either a moving solid, or of some of the liquid, if any
there is, of which spherical portions possess moment of momentum, into the fixed
spherical space; but it is perfect under the condition of § 10, as will be proved
in § 15.

12. First, T shall prove the following purely mathematical lemmas; using the

‘ordinary notation «, », m for the components of fluid velocity at any point

(@, ¥ ).

Lemma (1.) The condition (last clause) of § 10 requires that udz + v dy + wdz
be a complete differential,* at whatever instant and through whatever part of the
fluid the condition holds.

Lemma (2.) If uda + vdy + wdz be a complete differential of a single valued
function of z, y, #, through any finite space of the fluid, at any instant, the con-
dition of § 10 holds through that space at that instant.

* This proposition was, I believe, first proved by SroxEs in his paper ¢ On the Friction of

‘Fluids in Motion, and the Equilibrium and Motion of Elastic Solids.”—¢ Cambridge Philosophical

Transactions,” 14th April 1845.
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13. The following is Srtokes’ proof of Lemma (1):—First, for any motion
whatever, whether subject to the condition of § 10 or not, let L be the component
moment of momentum round OX of an infinitesimal sphere with its centre at O.
Denoting by /// integration through this space, we have

L =/fff(wy — vz)dedydz . . . (1).
Now let ( ) , (%) , &c. denote the values at O of the differential coefficients.
0 [1]

We have, by MAcLAURIN’s theorem,

dw) (dw) )
w=a + 2 >
dy

and so for ». Hence, remembering that (Eg , &c. are constants for the space
0

dw

through which the integration is performed, we have
S dz dy dzwi =<g—w) fffxydmdydz+(cfl—w Sy dz dy dz + %) W zydzdydz.
/o Y/a 0 ’

The first and third of the triple integrals vanish, because every diameter of a
homogeneous sphere is a principal axis; and if A denote moment of momentum
of the spherical volume round its centre, we have for the second

My?dedyds =% A.

Dealing similarly with vz in the expression for L, we find

%A[d“’ - ] . . . ).

But L must be zero according to the condition of § 10; and, therefore, as the
centre of the infinitesimal sphere now considered may be taken at any point of
space through which this condition holds at any instant, we must have, through-
out that space,

dw dv

L7
and similarly ; 5 C% - Z—Z =0 N ) F
W _ du _
de dy
which proves Lemma (1.)
14. To prove Lemma (2.), let
_ dp _dp __do : .
U= a’a-: , U @ y W= a; . . . . . (4:) ;

and let L denote the component moment of momentum round OX, through any
spherical space with O in centre. We have [(1) of § 13],
VOL. XXV. PART L 3L
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L =/fJf dx dy dz (wy — vz) . . . . . (9),
// denoting integration throughout this space (not now infinitesimal). But by (4)
d d d
yw—vz=(ygz—z@ ¢=g£ . (6);

if ?l% denote differentiation with reference to V», in the system of co-ordinate
z, p, \r, such that
y =¢pcos ", z=¢gsin~ . . , . . (7).

Hence, transforming (5) to this system of co-ordinates, we have

L:dedggd¢%—;. N ()}

Now, as the whole space is spherical, with the origin of co-ordinates in its centre,
we may divide it into infinitesimal circular rings with OX for axis, having each
for normal section an infinitesimal rectangle with dz and dp for sides. Inte-
grating first through one of these rings, we have

27 d@
dx dg% A dy,

which vanishes, because ¢ is a single-valued function of the co-ordinates. Hence
L = 0, which proves Lemma (2.).

15. Returning now to the dynamical proposition, stated at the conclusion of
§ 11 ; for the promised proof, let R denote the radial component velocity of the fluid
across any element, do, of the spherical surface, situated at (z, g, 2); and let
u, v, © be the three components of the resultant velocity at this point; so that

R=u§+v'—z+w; . . . . . . (9).

The volume of fluid leaving the hollow spherical space across de¢ in an infinitesimal
time, df is Rdg . d¢, and the moment of momentum of this moving mass round
the centre has, for component round OX,

(wy — vz) Rdo di.

Hence, if 1. denote the component of the moment of momentum of the whole,
mass within the spherical surface at any instant, #, we have (§ 11),

:%‘ :ﬂ‘(wy — vz) R do, . . . . (10).
Now, using Lemma (1.) of § 12, and the notation of § 14, we have

wy — V% =

lp
dy’
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and, by (9), a0

k= dr

where diz denotes rate of variation per unit length perpendicular to the spherical

surface, that is differentiation with reference to 7, the other two co-ordinates being
directional relatively to the centre. Hence, using ordinary polar co-ordinates, 7,

[/EZ— 74 sin § dody . . . . (11).

But the «equation of contmulty for an incompressible liquid (being
du dv dw
Ztrayta =%

gives* g* ¢ =0, for every point within the spherical space; and therefore [Trom-

soN & Tarr, App. B]

6, I, we have

p=2S,+ 8,7+ 8, 7% + &e. . . . . (12).

a converging series, where S| denotes a constant, and S,, S,, &c., surface harmo-
nics of the orders indicated. :

Hence g
R:Zf =8, +2r 8, + 3728, + &. . . (13)

And it is clear from the synthesis of the most general surface harmonic, by zonal,
sectional, and tesseral harmonics [THoMsox & Tarr, §781], that \]’ is a surface

harmonic of the same order as S;:} from which [TroMsox & Tair, App. B (16)],
it follows that,

a2 a2 d2
a2+ dyp dy* TR

§ This follows, of course, from the known analytical theorem that the operations v? and

* By v?2 we shall always understand

d d . Co
(y e @> are commutative, which is proved thus:—

By differentiation we have

d2<3/ @ dp o, ddp
szdz+ dy dz’

d dp _ dd;o

dy de ~ dedy’

7 d
" E-eg)- yvz(“’)-zvz() (=)
vily 5 — —( C—Z—v2
'/dz ‘dz 4 Y&~ dy ‘p,

¢ being any function whatever. Hence, 1f v? ¢ = 0 we have

dp _ dga
gf{,  0¢ —-0-
v (y & fay)="°

and therefore, since

or
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asy .
S; 5+ sinéddédy =0,
U s M

except when ¢ = ¢. But this is true also when ¢ = ¢ because

a8, @
| M=ty
and therefore, as in § 14, the integration for , from \» = 0 to \» = 2 = gives zero.

Hence (11) gives
L
dt ’

This and § 11 establish § 10.

16. Lemma (1) of § 11, and § 10 now proved, show that in any motion whatever
of an incompressible liquid, whether with solids immersed in it or not, udz +
vdy +mwdz is always a complete differential through any portion of the fluid, for
which it is a complete differential at any instant, to whatever shape and position
of space this portion may be brought in the course of the motion. This is the
ordinary statement of the fundamental proposition of fluid motion referred to in
§ 9, which was first discovered by LaeranGE. (For another proof see § 60.) Ihave
given the preceding demonstration, not so much because it is useful to look at
mathematical structures from many different points of view, but (§ 19) because the
dynamical considerations and the formulee I have used are immediately available
for establishing the theory of the impulse (§§ 8 . . . 8), of which a fundamental pro-
position was stated above (§5). . To prove this proposition (in §19) I now proceed.

17. Imagine any spherical surfaces to be described round a moveable solid or
solids immersed in a liguid. The surrounding fluid can only press (§ 1) perpen-
dicularly; and therefore when any motion is (§ 3) generated by impulsive forces
applied to the solids, the moment round any diameter of the momentum of the
matter within the spherical surface at the first instant, must be exactly equal to
the moment of those impulsive forces round this line. And the moment round
this line, of the momentum of the matter in the space between any two concentric
spherical surfaces is zero, provided neither cuts any solid, and provided that, if
there are any solids in this space, no impulse acts on them.

18. Hence, considering what we have defined as “the impulse of the motion,”
(§ 6), we see that its moment round any line is equal to the moment of momen-
tumround the same line, of all the motion within any spherical surface having its
centre in this line, and enclosing all the matter to which any constituent of the
impulse is applied. This will still hold, though there are other solids not in the-
neighbourhood, and impulses are applied to them: provided the moments of mo-
mentum of those only which are within S are taken into account, and provided
none of them is cut by S.

19. The statements of § 11, regarding fluid occupying at any instant a fixed
spherical surface, are applicable without change to the fluids and solids occupying
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the space bounded by S, because of our present condition, that no solid is cut by
S. Hence every statement and formula of § 15, as far as equation (11), may be
now applied to the matter within S; but instead of (12) we now have [TroMsoN -
& Tair, § 736], if we denote by T,, T,, &c., another set of surface spherical
harmonics,
p=8,+8 7 +85,77 + &e
St s -
for all space between the greatest and smallest spherical surface concentric with
S, and having no solids in it, because through all this space, § 16, and the equa-

tion of continuity prove that v* ¢ = 0. Hence, instead of (13), we now have

R = @ = Sl + 2r S2 + 372 Ss’ &ec.
dr
0 A . . (15).
_FT]._—Z‘TZ—;éT:‘I +&C.

Hence finally

::/]‘ [7« S —— d\]/ -+ 1T, ?Z%] sin 8d4d~p g (16).

Now if, as assumed in § 5, neither any moveable solids, nor any part of the
boundary exist within any finite distance of S all round; S,, S,, &c., must each

be infinitely small: and therefore (16) gives UiZL

asserted in § 5: because a system of forces cannot have zero moment round
every line drawn through any finite portion of space, without having force-resul-
tant and couple-resultant each equal to zero.

20. As the rigidity of the solids has not been taken into account, all or any of
them may be liquefied (§ 3) without violating the demonstration of § 19. To save
circumlocutions, I now define a vortex as a portion of fluid having any motion
that it could not acquire by fluid pressure transmitted through itself from its
boundary. Often, merely for brevity, I shall use the expression a body to denote
either a solid or a vortex, or a group of solids or vortices.

“21. The proposition thus proved may be now stated in terms of the definitions
of § 6, which were not used in § 5, and so becomes simply this:—7%e impulse of
the motion of @ solid or group of solids or vortices and the surrounding liquid remains
constant as long as no disturbance s suffered from the influence of other solids or
vortices, or of the containing vessel.

This implies, of course (§ 6), that the magnitudes of the force-resultant and
the rotational moment of the impulse remain constant, and the position of its axis
invariable.

= 0. This proves the proposition

* There is no term % becanse this would give, in the integral of flow across the whole sphe-

rical surface, a finite amount of flow out of or into the space within, implying a generatlon or
destruction of matter.

VOL. XXV. PART L 3IM
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22. In Poinsor’s system of the statics of a rigid body we may pass from the
resultant force and couple along and round the central axis to an equal resultant
force along the parallel line through any point, and a greater couple the resultant
of the former (or minimum) couple, and a couple in the plane of the two parallels,
having its moment equal to the product of their distance into the resultant force.
So we may pass from the force-resultant and rotational moment of the impulse
along and round its axis, to an equal force-resultant and greater moment of im-
pulse, by transferring the former to any point, Q, not in the axis (§ 6) of the
motion. This greater moment is (§ 18) equal to the moment of momentum round
the point Q, of the motion within any spherical surface described from Q as
centre, which encloses all the vortices or moving solids.

23. Hence a group of solids or vortices which always keep within a spherical
surface of finite radius, or a single body, moving in an infinite liquid, can have
no permanent average motion of translation in any direction oblique to the direc-
tion of the force-resultant of the impulse, if there is a finite force-resultant. For
the matter within a finite spherical surface enclosing the moving bodies or body,
cannot have moment of momentum round the centre increasing to infinity.

24. But there may be motion of translation when the force-resultant of the
impulse vanishes; and there will be, for example, in the case of a solid, shaped
like the screw-propeller of a steamer, immersed in an infinite homogeneous liquid,
and set in motion by a couple in a plane perpendicular to the axis of the screw.

25. And when the force-resultant of the impulse does no? vanish, there may be
no motion of translation, or there may even be translation in the direction opposite
toit. Thus, for example, a rigid ring, with cyclic motion, established (§ 63) through
it, will, if left at rest, remain at rest. And if at any time urged by an impulse
in either direction in the line of the force-resultant of the impulse of the cyclic
motion, it will commence and continue moving with an average motion of trans-
lation in that direction; a motion which will be uniform, and the same as if there
were no cyclic motion, when the ring is symmetrical. If the translatory impulse
is contrary to the cyclic impulse, but less in magnitude, the translation will be
contrary to the whole force-resultant impulse.

If the translatory impulse is equal and opposite to the cyclic impulse,
there will be translation with zero force-resultant impulse—another example of
what is asserted in § 24. 1In this case, if the ring is plane and symmetrical, or
of any other shape such that the cyclic motion (which, to fix ideas, we have sup-
posed given first, with the ring at rest,) must have had only a force-resultant,
and no rotational moment, we have a solid moving with a uniform motion of
translation through a fluid, and both force and couple resultant of the whole
impulse zero.

26. From §§ 21 and 4, we see that, however long the time of application of
the impressed forces may be—provided only that, during the whole of it, the
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solid or group of solids has been at an infinite distance from all other solids and
from the containing vessel—the time integrals of the impressed forces parallel
to three fixed axes, and of their moments round these lines, are equal to the six
corresponding components of ¢ the impulse” (§ 6).

27. If two groups, at first so far asunder as to exercise no sensible influence
on one another, come together, the “impulse’ of the whole system remains un-
changed by any disturbance each may experience from the other, whether by im-
pacts of the solids, or through motion and pressure of the surrounding fluid ; and
(§ 6) it is always reducible to the force-resultant along the central axis, and the
minimum couple-resultant, of the two impulses reckoned as if applied to one
rigid body. The same holds, of course, if one group separates into two so
distant as to no longer exert any sensible influence on one another.

28. Hence whatever is lost of impulse perpendicular to a fixed plane, or of
component rotational movement round a fixed line, by one group through collision
with another, is gained by the other.

29. Two of the moveable solids, or two groups, will be said to be iz coliision
when, having been so far asunder as not to disturb one another’s motions sen-
sibly, they are so near as to do so. This disturbance will generally be supposed
to be through fluid pressure only, but impacts of solids on solids may take place
during a collision.

30. We are now prepared to investigate (§§ 30, 31, 32) the influence of a fixed
solid on the impulse of a moveable solid, or of a vortex, or of a group of solids or
vortices, passing near it, thus—If during such collisions or separations as are con-
sidered in §§ 27, 28, forces are impressed on any one or more of the solids, their
alteration of the whole impulse is (§ 26) to be reckoned by adding to each of its
rectangular components the time integral of the corresponding component of
these impressed forces. Now, let us suppose such forces to be impressed on any
one of the moveable solids as shall keep it at rest. These forces are zero as long
as no moving solid is within a finite distance. But if a moving solid or vortex,
or group of solids or vortices, passes near the fixed solid, the change of pressure
due to the motion of the fluid will tend to move it, and the impression of force
on it becomes necessary to keep it fixed. Let ds be an element of its surface;
(z, y, ), the co-ordinates of the centre of this element; «, 8, ¥ the inclinations of
the normal at (2, y, 2) to the three rectangular axes; and p the fluid pressure
at time ¢, and point (2, , 2). The six components of force and couple required

_to hold the body fixed at time ¢, are '

ffde. cosea.p, ffde.cos B.p, [fde.cosy.p; '
Jde (ycosy — zcosfB)p, [fde(zcosa — xcosy)p , [fde(xcosfB — ycosz)p, - (D

If in these expressions we substitute
Spdi . . . . ) (2).
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in place of p ( /d¢ denoting a time integral from any era of reckoning before the
disturbance became sensible, up to time ¢, which may be any instant during the
collision, or after it is finished), we have the changes in the corresponding com-
ponents of the impulse up to time ¢, provided there has been no impact of move-
able solid on the fixed solid.

31. Let now the * velocity potential” (as we shall call it, in conformity with a
German usage which has been adopted by HeLmBOLTZ,) be denoted by ¢; that is
(§ 16), let ¢ be such a function of (2, y, 2, ¢) that

@ =9 - : : (3).

uza—x—,’l)—zl}‘,w—-dz

and let ¢ (or dt) denote its rate of variation per unit of time at any instant ¢,

for the point (z, ¥, 2) regarded as fixed.
Also, let ¢ denote the resultant fluid velocity, so that

2 .2 2 2 — ‘P d?’ p*
¢ =utvitwt=og + -5 e dz2 . . 4)-

‘The ordinary hydro-dynamical formula gives

p=0-¢-1gq" . : : - ©);
where II denotes the constant pressure in all sensibly quiescent parts of the
fluid.

32. The constant term II disappears from p in each of the integrals (1) of
§ 30, because a solid is equilibrated by equal pressure around. And in the time

integral (2), we have .
Sodt=¢ : . . : . (6);

and therefere if (XYZ) (LMN) denote the changes in the force-and couple-com-
ponents of the impulse produced by the collision up to time #, we have

X = —fdecosa (p + 4/¢*dt), Y = &c., 7 = &, } . .

L= —ffde(ycosy—=zcosB)(p + %/¢* dt), M = &c., N= &c.,

But because the fluid is quiescent in the neighbourhood of the fixed body when
the moving body or group of bodies is infinitely distant from it; it follows that
before the commencement and after the end of the collision we have ¢ = 0 at
every point of the surface of the fixed body. Hence, for every value of # represent-
ing a time after the completion of the collision, the preceding expressions become

X =~ }fdecosafg®dl, Y = &e.,, Z = &c,
L = — 3 fde(ycosy — zcos B) fg*dt, M = &, N = &, } ) ) 8);

which express that the integral change of impulse experienced by a body or group
of bodies, in passing beside a jfized body without striking it, may be regarded as a

L
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system of impulsive attractions towards the latter, everymwhere in the direction of the
normal, and amounting to ¥ fg°dt per unit of area. But it must not be forgotten
that the term ¢ in, the expression [§ 31 (5)] for p produces, as shown in § 30 (1),
an influence during the collision, the integral effect of which only disappears
from the expression [§ 32 (7)] for the impulse after the collision is completed ; that
is (§ 29) after the moving system has passed away so far as to leave no sensible
fluid motion in the neighbourhood of the fixed body.

33. Hence, -and from § 23, we see that when there is no impact of moving
solid against the fixed body, and when the moving solid or group of solids passes
altogether on one side of the fixed body, the direction of the translation will be
deflected, as if there were, on the whole, an attraction towards the fixed body, or
a repulsion from it, according as (§ 25) the translation is in the direction of the
impulse or opposite to it. For, in each case, the impulse is altered by the intro-
duction of an impulse towards the fixed body upon the moving body or bodies as
they pass it ; and (§ 23) the translation before and after the collision is always
along the line of the impulse, and is altered in direction accordingly. This will
be easily understood from the diagrams, where, in each case B represents the
fixed body, the dotted line ITT’T’, and arrow-heads I T, the directions of the force-
resultant of the impulse at successive times, and the full arrow-heads T 1", the
directions of the translation.

Fig.1 /ln v Fig.2 .-’7’{'1
AT Vi
\‘;/Tl
At =..
/ AT

A FANS
""I AN
S
St 3

All ordinary cases belong to the class illustrated by fig. 1. The case of a
rigid ring, with cyclic motion (§ 25) established round it as core, belongs to the
class illustrated by fig. 2, if the ring be projected through the fluid in the direc-
tion perpendicular to its own plane, and contrary to the cyclic motion through
its centre.

34. When (§66) we substitute vortices for the moving solids, we shall see (§ 67)
that the translation is probably always in the direction wizk the impulse. Hence,
as illustrated by fig. 1, there is always the deflection, as if by a#traction, when a
group of vortices pass all on one side of a fixed body. Thisis easily observed, for
a simple Helmholtz ring, by sending smoke rings on a large scale, accordiny to

VOL. XXV. PART I. ' 3~
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Professor Tart’s plan, in such directions as to pass very near a convex fixed sur-
face. An ordinary 12-inch globe, taken off its bearings and hung by a thin cord,
answers very well for the fixed body.

35. The investigation of §§ 30, 31, 32, is clearly applicable to a vortex or a
moving body, or of a group of vortices or moving bodies, which keep always
near one another (§ 23), passing near a projecting part of the fixed boundary,
and being, before and after this collision (§ 29), at a very great distance from
every part of the fixed boundary. Thus,a Helmholtz ring projected so as to pass
near a projecting angle of two walls, shows a deflection of its course, as if caused
by attraction towards the corner.

36. In every case the force-resultant of the impulse is, as we shall presently
see (§ 37), determinate when the flow of the liquid across every element of any
surface completely enclosing the solids or vortices is given ; but not so, from such
data, either the axis (§ 6) or the rotational moment, as we see at once by con-
sidering the case of a solid sphere (which may afterwards be supposed liquefied) set
in motion by a force in any line not through the centre, and a couple in a plane
perpendicular to it. For this line will be the ““ axis,” and the impulsive couple will
be the rotational moment of the whole motion of the solid and liquid. But the
liquid, on all sides, will move exactly as it would if the impulse were merely
an impulsive force of equal amount in a parallel line through the centre of the
sphere, with therefore this second line for ¢ axis” and zero for rotational moment.
For illustration of rotational moment remaining latent in a liquid (with or with-
out solids) until made manifest by actions, tending to alter its axis, or showing
effects of centrifugal force due to it; see § 66, and others later.

37. The component impulse in any direction is equal to the corresponding
compounent momentum of the mass enclosed within the surface S, containing all
the places of application of the impulse, together with that of the impulsive
pressure outwards on this surface. But as the matter enclosed by S (whether all
liquid or partly liquid and partly solid) is of uniform density, its momentum will
be equal to its mass multiplied into the velocity of the centre of gravity of the
space within the surface S supposed to vary so as to enclose always the same
matter, and will therefore depend solely on the normal motion of S; that is to
say, on the component of the fluid velocity in the direction of the normal at every
point of S. And the impulsive fluid pressure, corresponding to the generation of
the actual motion from rest, being the time integral of the pressure during the
instantaneous generation of the motion, is (§§ 31, 32) equal to — ¢, the velocity
potential; which (§ 61) is determinate for every point of S, and of the exterior
space when the normal component of the fluid motion is given for every point of
S. Hence the proposition asserted in § 36. Denoting by d¢ any element of S;
N the normal component of the fluid velocity; @ the inclination to OX, of the
normal drawn outwards through do; and X the z-component of the impulse; we
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have for the two parts of this quantity considered above, and its whole value, the
following expressions; of which the first is taken in anticipation from § 42—

a-momentum of matter, within S, = [N ds (8) of 5: 42
x-component of impulsive pressure on S, outwards, = — f/p cos ade } (@)
X = ff(Nz — ¢ cos ) de . . . . . (2).

It is worthy of remark that this expression holds for the 1mpulse of all the solids
or vortices within S, even if theré be others in the immediate neighbourhood out-
side: and that therefore its value must be zero if there be no solids or vortices
within S, and N and ¢ are due solely to those outside.

38. If ¢ be the potential of a magnet or group of magnets, some within S and
others outside it, and N the normal component magnetic force, at any point of S,
the preceding expression (2) is equal to the z-component of the magnetic moment
of all the magnets within S, multiplied by 4=. Ior let p be the density of any
continuous distribution of positive and negative matter, having for potential, and
normal component force, ¢ and N respectively, at every point of S. We have

[THOoMsoN & TaiT, {491 (¢)] ¢ = — —1— —v* ¢, and therefore

a2 d"'
Mzdx dy dz = - Ir /]/ <dm2 + ——2 ; do dy dz . . (3).

Now, integrating by parts,* as usual with such expressions, we have

2
[f dsadxdydﬁ—f/ ——dJclz ﬂ dx dy dz :ﬂ( Z%:——ga)dydz.

Hence, integrating each of the other two terms of (3) once simply, and reducing
as usual [TaoMsoN & TarT, App. A (@)] to a surface integral, we have

ﬂ.gxdxdyclz=—§%f (N — pcosa)ds . . . : 4);

which proves the proposition, and also, of course, that if there be no matter
within S, the value of the second member is zero.

39. Hence, considering the magnetic and hydrokinetic analogous systems
with the sole condition that at every point of some particular closed surface, the
magnetic potential is equal to the velocity potential, we conclude that 4~ times
the magnetic moment of all the magnetism within any surface, in the magnetic
system, is equal to the force-resultant of the impulse of the solids or vortices
within the corresponding surface in the hydrokinetic system ; and that the direc-
tions of the magnetic axis and of the force-resultant of the impulse are the same.
For the theory of magnetism, it is interesting to remark that indeterminate dis-
tributions of magnetism within the solids, or portions of fluid to which initiating

* The process here described leads merely to the equation obtained by taking the last two equal
memabers of App. A (1) (Tuomson & Tarr) forthecasea =1, U =9, U' =
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forces (§8) were applied, or determinate distributions in infinitely thin layers
at their surfaces, may be found, which through all the space external to them
shall produce the same potential as the velocity-potential, and therefore the same
distribution of force as the distribution of velocity through the whole fluid.
But inasmuch as when the magnetic force in the interior of a magnet is
defined in the manner explained in §48 (2) of my “Mathematical Theory of
Magnetism,”* it is expressible through all space by the differential coefficients of
a potential; and, on the contrary, for the kinetic system v dz + v dy + w dz is
not a comnplete differential generally through the spaces occupied by the solids,
the agreement between resultant force and resultant flow holds only through the
space exterior to the magnets and solids in the magnetic and kinetic systems
respectively. But if the other definition of resultant force within a magnet,
[“Math. Theory of Magnetism,” § 77, foot-note, and § 78], published in preparation
for a 6th chapter “On Electro-magnets” (still in my hands in manuscript, not
quite completed). and which alone can be adopted for spaces occupied by non-mag- -
netic matter traversed by electric currents, the magnetic force has not a potential .
within such spaces; and we shall see ({68) that determinate distributions of
closed electric currents through spaces corresponding to the solids of the hydro-
kinetic system can be found which shall give for every point of space, whether
traversed by electric currents or not, a resultant magnetic force, agreeing in
magnitude and direction with the velocity, whether of solid or fluid, at the cor-
responding point of the hydrokinetic system. This thorough agreement for all
space renders the electro-magnetic analogue preferable to the magnetic; and,
having begun with the magnetic analogous system only because of its convenience
for the demonstration of § 38, we shall henceforth chiefly use the purely electro-
magnetic analogue. :

40. To prove the formula used in anticipation, in § 37 (1) we must now
(§§ 41, 42, 43) find the momentum of the whole matter—fluid, fluid and solid,
or even solid alone—at any instant within a closed surface S, in terms of the
normal component velocity of the matter at any point of this surface, or, which is
the same, the normal velocity of this surface itself, if we suppose it to vary so
as to enclose always the same matter. _

41. Let V be the volume of the space bounded by any varying closed surface
S. As yet we need not suppose V constant. Let &, 7, Z be the co-ordinates of
of the centre of gravity. We have : '

Vi = §ff[#*dydz] . . : . (5),
where [ ] indicates that the expression within it is to be taken between proper
limits for S. Now as S varies with the time, the area through which //'dy dz is -
taken will in general vary; but the increments or decrements which it experiences

* Trans. R. 8. Lond,, 1851 ; or ¢ Tromson’s Electrical Papers” Macmillan. 1869,
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at different parts of the boundary of this area, in the infinitely small time dt,
contribute no increments or decrements to // [#'dy dz], as we see most easily by
first supposing S to be a surface everywhere convex outwards. Hence

ﬂ[wzdydz]—f/[d(”z)dydz:|=2/]‘[ms_fdydz] . (®).

But if N denote the velocity with which the surface moves in the direction of its
outward normal at (z, ¥, #), we have, in the preceding expression

dx
dat

if « be the inclination of the outward normal to OX. Hence

d(Vw) _ f/[wN sec @ dy dz] .

But the condition as to limits indicated by [ ] are clearly satisfied, if, do
denoting an element of the surface, such that

=N seca ) . . - (),

dy dz = cos ads,

we simply take // do over the whole surface. Thus we have

9 _flexas . . . . W

42. In any case in which V is constant, this becomes

V%if;ffmmc L : )

If now the varying surface, S, is the boundary of a portion of the matter—fluid
or solid—of uniform 'density unity, with whose motions we are occupied, the

z-component momentum of this portion is V dég; and, therefore, equation (8) is

the required (§ 40) expression.

43. The same formulee (7) and (8) are proved more shortly of course by the
regular analytical process given by Poissox* and Greent in dealing with such
subjects; thus, in short. I.et u, v, w be the components of velocity, of any matter,
compressible or incompressible, at any point (z, y, z) within S; and let ¢ denote

the value at this point of % + Z—% + d—w , so that

du _ dv
We have, for the component momentum of the whole matter within S, if of unit
density at the instant considered,

f//“ddedz —/fuwdydz —f/ﬁ— da dy dz . (@0).

* Théorie de la Chaleur, § 60. t Essay on Electricity and Magnetism.
VOL. XXV. PART L. : 30
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But by (9)

Hacdyas = [ foaavayas— [[f s (7 + %
/]fx@dwdydz_f/ cw de dy dz :v(dy+ 7 dx dy dz

and by simple integrations,

dv | d '
jﬂm<£+£ dmdydz:%/gc(vdmdz+wdxdy).

Using these in (10), and altering the expression to a surface integral, as in
THoMsoN & Tait, App. A (a), we have

[fudedyde = ffz(udydz + vdede + wdedy) — fffcx dw dy dz
= ffaNde — [ffexdedydz . . . . . (11,

which clearly agrees with (7).
When this mass is incompressible, we have ¢ =0 by the formula so ill named
the equation “ of continuity” (TrHomsoN & Tair, § 191), and we fall upon (8.)

The proper analytical interpretation of the differential coefficients f%, &c.,

and of the equation of continuity, when, as at the surfaces of separation of fluid
and solids, #, », w are discontinuous functions, having abruptly varying values,
presents no difficulty.

44, In the theory of the impulse applied to the collision (§ 29) of solids or
vortices moving through a liquid, the force-resultant of the impulse corresponds,
as we have seen, precisely to the resultant momentum of a solid in the ordinary
theory of impact. Some difficulty may be felt in understanding how the zero-
momentum (§ 4) of the whole mass is composed; there being clearly positive
momentum of solids and fluids in the direction of the impulse in some localities
near the place of its application, and negative in others. [Consider, for example,
the simple case of a solid of revolution struck by a single impulse in the line of
its axis. The fluid moves in the direction of the impulse, before and behind the
body, but in the contrary direction in the space round its middle.] Three modes
of dividing the whole moving mass present themselves as illustrative of the dis-
tribution of momentum through it; and the following propositions (§ 45) with
reference to them are readily proved (§§ 46, 47, 48).

45. I. Imagine any cylinder of finite periphery, not necessarily circular, com-
pletely surrounding the vortices (or moving solids), and .any other surrounding
none, and consider the infinitely long prisms of variously moving matter at any
instant surrounded by these two cylinders. The component momentum parallel
to the length of the first is equal to the component of the impulse parallel to the
same direction; and that of the second is zero.

II. Imagine any two finite spherical surfaces, one enclosing all the vortices
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or moving solids, and the other none. The resultant-momentum of the whole
matter enclosed by the first is in the direction of the impulse, and is equal to %
of its value. The resultant-momentum of the whole fluid enclosed by the
second is the same as if it all moved with the same velocity, and in the same
direction, as at its centre.

III. Imagine any two infinite planes at a finite distance from one another
and from the field of motion, but neither cutting any solid or vortex., The com-
ponent perpendicular to them of the momentum of the matter occupying at any
instant the space between them (whether this includes none, some, or all of the
-vortices or moving solids) is zero.

46. To prove these propositions:— :

I. Consider in either case a finite length of the prism extending to a very
great distance in each direction from the field of motion, and terminated by
plane or curved ends. Then, the motion being, as we may suppose (§ 61) started
from rest by impulsive pressures on the solids [or (§ 66) on the portions of fluid
_ constituting the vortices]; the impulsive fluid pressure on the cylindrical surface
can generate no momentum parallel to the length; and to generate momentum
in this direction there will be, in case 1, the impressed impulsive forces on- the
solids, and the impulsive fluid pressures on the ends; but in case 2 there will
be only the impulsive fluid pressure on the ends. Now, the impulsive fluid
pressures on the ends diminish [§ 50 (15)] according to the inverse square of the
distance from the field of motion, when the prism is prolonged in each direction,
and are therefore infinitely small when the prisms are infinitely long each Way
Whence the proposition I. A

47. By using the harmonic expansmns § 19, (14), (15), in the several expres-
sions (1), (2), of § 37, (1), (2); and the fundamental theorem

J3: % de=0,

of the harmonic analysis [THomsoN & Tarr, App. B. (16)]; and putting S, =0
for one case, and T, = 0 for the other; we prove the two parts of Plop II § 456
immediately. -

48. To prove Prop. II, § 45, the well-known theory of electric images in a
plane conductor* may be conveniently referred to. It shows that if N, denotes
the normal component force at any point of an infinite plane due to any distribu-
tion, u, of matter in the space lying on one side of the plane, a distribution of

matter over the plane having —Ql; N, for surface density at each point exerts the

same force as « through all the space on the other side of the plane, and therefore
that the whole quantity of matter in that surface distribution is equal to the

* Tuomson, Camb. and Dub. Math. Journal, 1849 ; LiouviLLe's Journal 1845 and 1847 ; or
Reprints of Electrical Papers, (Macmillan, 1869.)



236 SIR W. THOMSON ON VORTEX MOTION.

whole quantity of matter in «.* Hence, j/ do, denoting integration over the
infinite plane

JNyde=0 . . . . . . (12).

if the whole quantity of matter in u be zero. Hence, if N be the normal force
due to matter through space on both sides of the plane, provided the whole quan-
tity of matter on each side separately is zero,

JNde=0 . . . . . (4d);

since N is the sum of two parts, for each of which separately (12) holds. This
translated into hydrokinetics, shows that the whole flow of matter across any
infinite plane is zero at every instant when it cuts no solids or vortices. Hence,
and from the uniformity of density which (§ 3), we assume, the centre of gravity
of the matter between any two infinite fixed parallel planes, has no motion in
the direction perpendicular to them at any time when no vortex or moving solid
is cut by either : which is Prop. IIL of § 4 in other words.

49. The integral flow of matter across any surface whatever, imagined to
divide the whole volume of the finite fixed containing vessel of § 1 into two parts is
necessarily zero, because of the uniformity of density; and therefore the momen-
tum of all the matter bounded by two parallel planes, extending to the inner
surface of the containing vessel, and the portion of this surface intercepted
between them has always zero for its component perpendicular to these planes,
whether or not moving solids or vortices are cut by either or both these planes.
But it is remarkable that when any moving solid or Vqrtex is cut by a plane, the
integral flow of matter across this plane (if the containing vessel is infinitely
distant on all sides from the field of motion), converges to a generally finite value,
as the plane is extended to very great distances all round from the field of
motion, which are still infinitely small in comparison with the distances to the
containing vessel; and diminishes from that finite value to zero by another con-
vergence, when the distances to which the plane is extended all round begin to
be comparable with, and ultimately become equal to, the distances of the curve
in which it cuts the containing vessel. Hence we see how it is that-the condition
of neither plane cutting any moving solid or vortex is necessary to allow § 46,
IIL. to be stated without reference to the containing vessel, and are reminded that

* This is verified synthetically with ease, by direct integrations showing (whether by Cartesian
or polar plane co-ordinates), that

_adydr .
f_w BN T =2 . . . . (13).
And taking C;Z of this, we have
2L+ = 2d)dy de o . ,
S/ A e L

the synthesis of (12).
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the equality to zero asserted in this proposition is proved in § 48 to be approxi-
mated to when the planes are extended to distances all round, which, though infi-
nitely short of the distances to the containing vessel, are very great in comparison
with their perpendicular distances from the most distant parts of the field of
motion.

50. The convergencies concerned in § 46, I, III. may be analysed thus. Per-
pendicular to the resultant impulse draw any two planes on the two sides of the °
tield of motion, with all the moving solids and vortices between them, and divide
a portion of the space between them into finite prismatic portions by cylindrical
(or plane) surfaces perpendicular to them. Suppose now one of these prismatic
portions to include all the moving solids and vortices, and without altering the
prismatic boundary, let the parallel planes be removed in opposite” directions to
distances each infinite (or very great) in comparison with distance of the most
distant of the moving solids or vortices. By § 46, I., the momentum of the motion
within this prismatic space is (approximately) equal to the force-resultant, I, of
the impulse, and that of the motion within any one of the others is (approximately)
zZero. .

But the sum of these (approximately) zero values must, on account, of § 46,
II1., be equal to — I, if the portions of the planes containing the ends of the
prismatic spaces be extended to distances very great in comparison with the dis-
tance between the planes. To understand this, we have only to remark that if ¢
denotes the velocity potential at a point distant D from the middle of the field,
and « from a plane through the middle perpendicular to the impulse, we have
(§ 53) approximately, :

b= L),
provided D be great in comparison with the radius of the smallest sphere enclos-
ing all the moving solids or vortices. Hence, putting # = == a for the two planes
under consideration, denoting by A the area of either end of one of the.prismatic
portions, and calling D the proper mean distance for this area, we have (§ 46) for
the momentum of the fluid motion within this prismatic space, provided it con-
tains no moving solids or vortices,

-

la . . .. (e

_24arD3
-‘_l-.

This vanishes when ]% is an infinitely small fraction (as 5 is at most 'unity); but

it is finite if % is finite, provided % be not infinitely small. And its integral
value (compare § 48, footnote) converges to — I, when the portion of area in-
cluded in the integration is extended tiil % is infinitely small for all points of its
boundary. ,

VOL XXV. PART 1. 3P
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51. Both as regards the mathematical theory of the convergence of definite
integrals, and as illustrating the distribution of momentum in a fluid, it is inter-
esting to remark that, # denoting component velocity parallel to #, at any point
(z, y, ), the integral /jj'u da dy dz, expressing momentum, may, as is readily
proved, have any value from —o to +o according to the portions of space
through which it is taken.

52. As a last illustration of the distribution of momentum, let the containing
vessel be spherical of finite radius a.

We have, as in § 19, '

p =8, + S, r+ 87 + &c,
(1),

+ T, 72+ T, r 3 4+ &e,
each series converging, provided » is less than «, and greater than the radius
of the smallest concentric spherical surface enclosing all the solids or vortices.
Now, by the condition that there be no flow across the fixed containing surface

we must have
de

o= 0, when » = a . . . . . (15),
which gives
7+ 1 i
Si = 7 a21;+1 (16> ;
and (14) becomes -
T s T "8y
¢:721(1+2E§)-+F§<1+:2—a—5)+&c' . . @A,

But [§ 37 (1) ] if the whole amount of the z-component of impulsive pressure
exerted by the fluid within the spherical surface of radius 7, upon the fluid round

it be denoted by F, we have .
F = — ffpcosdds . . : . (18),

6 being the inclination to OX of the radius through ds. Now cos 0 is a surface
harmonic of the first order, and therefore all the terms of the harmonic expan-
sion, except the first, disappear in the integral, which consequently becomes

F = _<1+2g)//‘Tlco'so§.; . . . (19).

T,= — Az+By+ Ce i _ . (20),

r

Now let

this being [THOMSON & TaIT, App. B, § i, j] the most general expression for a sur-
face harmonic of the first order. We have cos?® :g ; and therefore (by spheri-

cal harmonics, or by the elementary analysis of moments of inertia of a uniform
spherical surface),
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ﬂT coso‘ Aﬂ?da—@. ‘ NG

3N 4aA
== 2,—]— . — . . . . 2' :
F=(1+25)-75 (22)

Whence, if X denote the z-momentum of the fluid at any instant in the space
between concentric spherical surfaces of radius 7 and 7/, -

and (19) becomes

273 — o3
X= T3 7T a3

If » and 7’ be each infinitely small in comparison with ¢, this expression vanishes,
as it ought to do, in accordance with § 45, II. But if

- =0, &r=a '
@ : : . . (24),
it becomes X =—%.47A ’

fulfilling § 4, by showing in the fluid outside the spherical surface of radius 7’ a
momentum equal and opposite to that (§ 45, II.) of the whole matter, whether
fluid or solid, within that surface. '

53. Comparing § 47 and § 52, we see that if X,Y, Z be rectangular com-
ponents of the force-resultant of the impulse, the term T, »—? of the harmonic
expansion (14) is as follows :—

- X Y. Z .
Tl T 2 — _@igg# . . .. (20)}

47A . : . . (23).

provided all the solids and vortices taken into account are within a spherical
surface whose radius is very small in comparison with the distances of all other
vortices or moving solids, and with the shortest distance to the fixed bounding
surface. "

54. HELMBOLTZ, in his splendid paper on Vortex Motion, has made the very
important remark, that a certain fundamental theorem of GrREEN’s, which has
been used to demonstrate the determinateness of solutions in hydrokinetics, is
subject to exception when the functions involved have multiple values. This calls
for a serious correction and extension of elementary hydrokinetic theory, to
which I now proceed.

55. In the general theorem (1) of THOMSON & Tarr, App. A let a=1. It
becomes

dp dp'  dp dp’ dga de’ ﬂ :
ﬂ dz da dy dy pA dz)dscdydz de ooy’ //ﬁwdydzev o ~
=ﬂ dop'ag f// da dy dzp'vie L A1),

which is true without exception if ¢ and ¢’ denote any two single-valued functions
of z,y,%; [l/dxdydz integration through the space enclosed by any finite closed
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surface, §; //do integration over the area of this surface; and U rate of variaticn
per unit of length in the normal direction at any point of it. This is GREENS
originall theorem, with HerLmBOLTZ’s limitation added (in italics.) The reader may
verify it for himgelf.

56. But if either ¢ or ¢’ is a many-valued function, and the differential co-

. d Cde . .
efficients % dz’ ---» each single-valued, the double equation (1) cannot

be generally true. Its first member is essentially unémbiguous ; but the process
of integration by which the second member or the third member is found, would
introduce ambiguity if ¢ or if ¢’ is many-valued. In one case the first member,
though not equal to the ambiguous second, would be equal to the third, provided
¢ is not also many-valued ; and in the other, the first member, though not equal
to the third, would be equal to the second, prov1ded ¢ is not many-valued.

For example, let

* — tan<1 ¥ 9
¢ =tanxt? ‘ . . @).

and let S consist of the portions of two planes perpendicular to OZ, intercepted
between two circular cylinders having OZ for axis, and the portions of these
cylinders intercepted between .the two planes. The inner cylindrical boundary
excludes from the space bounded by S, the line OZ where ¢’ has an infinite

number of values, and d¢ , and have infinite values. We have

dy -y de =
dr — 2+ yz’ dy — 2* 4+ 3?2

(3)’

and at every point of S, d¢p’ = 0. Then, if ¢ be single-valued, there is no failure
in the process proving the equality between the first and second members of (1),

which becomes v

[/ x2 7 2 2 g dydz=0 . : L@
Compare § 14 (6) to end. -
The third member of (1) becomes

[/2% tan-1 g bo —fﬂtan“l Z— Viededyd: . : (®),

which is no result of unambiguous integration of the first member through the
space enclosed by S, ds we see by examining, in this case, the particular mean-
ing of each step of the ordinary process in rectangular co-ordinates for proving
GREEN's theorem. It is thus sten that we must add to (5) a term

%;/];Zmdz( )1_0 ,
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if in its other terms the value of tan‘lg is reckoned continuously round from

one side of the plane ZOX to the other: or

Ll
- 2¢ﬂdy cZz((Z—z—>x=o

if the continuity be from one side of ZOY to the other ; to render it really equal
to the first member of (1). Thus, taking for example the first form of the
added term, we now have for the corrected double equation (1) for the case of

¢ = tan™' g , ¢ any single valued function, and S the surface, composed of the

two co-axal cylinders and two parallel planes specified above:

L0
ﬂ &7 R- dedyde =0 = QVi/‘ da:olz( : +[/€Zdtan_1 gbp
wZ + ?/ y=0 ) €
—f[/ dx dydz tan“lgvzp S . (6).

But if we annex to S any barrier stopping circulation round the inner
cylindrical core, all ambiguity becomes impossible, and the double equa-
tion (1) holds. For instance, if the barrier be the portion of the plane ZOX,
intercepted between the co-axal cylinders and parallel planes constituting the . .
S of § 55, so that f/do must now include integration over each side of this
rectangular area; (6) becomes simply the strict application of (1) to the case
in question. i

57. The difficulty of the exceptional interpretation of GREEN’s theorem for the
class of cases exemplified in §§55 and 56, depends on the fact that /Fds may have
different values when reckoned along the lengths of different curves, drawn within
the space bounded by S, from a point P to a point Q; ds being -an infinitesimal
element of the curve, and F the rate of variation of ¢ per unit of length along it.
Let PCQ, PC'Q be two curves for which the /Fds has differenf values; and let
both lie wholly within S. If we draw any curve from P to Q; make it first
coincide with PCQ, and then vary it gradually until it coincides with PC'Q; it
must in some of its intermediate forms cut the bounding surface S: for we have

{ d d
Fds = “P dzx + %% 2P 4.
Jn z+dydy+dzd_

“dp deo d
throughout the space contained within S, and. SD d;’ j, are each of them

unambiguous by hypothesis; which implies that f Fds has equal values for all
VOL. XXV. PART I. 3Q
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gradual variations of one curve between P and Q, each lying wholly within S.
Now, in a simply continuous space, a curve joining the points P and Q may be
gradually varied from any curve PCQ to any other PC'Q, and therefore if the
space contained within S be simply continuous, the difficulty depending on the
multiplicity of value of ¢ or ¢’ cannot exist. And however muitiply continuous
(§ 58) the space may be, the difficulty may be evaded if we annex to S a
surface or surfaces stopping every aperture or passage on the openness of which
its multiple continuity depends; for these annexed surfaces, as each of them
occupies no space, do not disturb the triple integrations (1), and will, therefore,
not alter the values of its first member; but by removing the multiplicity of con-
tinuity, they free each of the integrations by parts, by which its second or third
members are obtained, from all ambiguity. To avoid circumlocution, we shall
call B the addition thus made to S; and further, when the space within S is
(§58) not merely doubly but triply, or quadruply, or more multiply, continuous,
we shall designate by 8,, 8,; or 8,, 8,, B,; and so on; the several parts of 8 re-
quired in any case to stop all multiple continuity of the space. These parts of 8
may be quite detached from one another, as when the multiple continuity is that
due to detached rings, or separate single tunnels in a solid. But one part 8, may
cut through part of another, 8,, as when two rings (§ 58, diagram) linked into one
another without touching constitute part of the boundary of the space considered.
And we shall denote by //ds, integration over the surface 8, or over any one of
its parts, 8, B,, &c. Let now P and Q be each infinitely near a point B, of 8, but
on the two sides of this surface. Let « denote the value of /Fds along any curve
lying wholly in the space bounded .by S, and joining PQ without cutting the
barrier; this value being the same for all such curves, and for all positions of B
to which it may be brought without leaving 8, and without making either P or Q
pass through any part of 3. That is to say, « is a single constant when the space
is not more than doubly continuous; but it denotes one or other of » constants
Ky, Ky, « « - K, Which may be all different from one another, when the space is %-ply
continuous. Lastly, let «”denote the same element, relatively to ¢, as « relatively
to ¢. We find that the first steps of the mteglatlons by parts now introduce,
without ambiguity, the additions

sx/fds 0¢’, and 2x' [fds bp . . . (6),
to the second and third numbers of (1): = denoting summation of the integra-
tions for the different constituents 8, 8,, ... of 8; but only a single term when

the space is (§ 58) not more than doubly continuous. GREEN’S theorem thus
corrected becomes

dp dgp' | dp dgb do dg’ _/'/' [/ _
/f(dm dz dy (ZJ dz dz> dz dy dz do b’ + 3x [ [ de g’ /]/HPV ¢ dudy dz
:[/dc pbp + En"/ﬁls i8] —f[fp’v2¢dmdydz . .
o«
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58. Adopting the terminology of RiemanN, as known to me through HeLm-
HOLTZ, I shall call a finite position of space n-ply continuous when its bounding
surface is such that there are » irreconcilable paths between anytwo points in
it. To prevent any misunderstanding, Iadd (1), that by @ portion of space I mean
such a portion that any point of it may be travelled to from any other point of
it, without cutting the bounding surface; (2), that the * paths” spoken of all lie
within the portion of space referred to; and (3), that by irreconcilable paths
between two points P and Q; I mean paths such, that a line drawn first along
one of them cannot be gradually changed till it coincides with the other, being
always kept passing through P and Q, and always wholly within the portion of
space considered. Thus, when all the paths between any two points are recon-
cilable, the space is simply continuous. When there are just two sets of paths,
so that each of one set is irreconcilable with any one of the other set, the space
is doubly continuous; when there are three such sets it is triply continuous, and
so on. To avoid circumlocutions, we shall suppose S to be the boundary of a
hollow space in the interior of a solid mass, so thick that no operations which we
shall consider shall ever make an opening to the space outsideit. A tunnel through
this solid opening at each end into the interior space constitutes the whole space
doubly continuous ; and if more tunnels be made, every new one adds one to the
degree of multiple continuity. When one such tunnel has been made, the surface
of the tunnel is continuous with the whole bounding surface of the space con-

‘sidered; and in reckoning degrees of continuity, it is of no consequence whether
the ends of any fresh tunnel be in one part or another of this whole surface.
Thus, if two tunnels be made side by side, a hole anywhere opening from one of
them into the other adds one to the degree of multiple continuity. Any solid
detached from the outer bounding solid, and left, whether fixed or movable in the
interior space, adds to the bounding surface an isolated portion, but does not in-
terfere with the reckoning of multiple continuity. Thus, if we begin with a simply
continuous space bounded outside by the inner surface of the supposed exter-
nal solid, and internally by the boundary of the detached solid in its interior,
and if we drill a hole in this solid we produce double continuity. Two holes,
or two solids in the interior each with one hole (such as two ordinary solid
rings), constitute triple continuity, and so on. A sponge-like solid whose
pores communicate with one another, illustrates a high degree of multiple con-
tinuity, and it is of no consequence whether it is attached to the external
bounding solid or is an‘isolated solid in the interior. Another type of multiple
continuity, that presented by two rings linked in one another, was referred
to in § 57.

‘When many rings are linked into one another in various combinatiouns, there
are complicated mutual intersections of the several partial barriers 8,, 8,, . . .
required to stop all multiple: continuity. But without having any portion of the
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bounding solid detached, as in that case in which one at least of the two rings'is
loose, we have varieties of multiple continuity curiously different from that illus-
trated by a single ordinary straight or bent tunnel, illustrated sufficiently by the
simplest types, which are obtained by boring a tunnel along a line agreeing in
form with the axis of a cord or wire on which a simple knot is tied ; and by fixing
the two ends of wire with a knot on it to the bounding solid, so that the surface
of the wire shall become part of the bounding surface of the space considered, the
knot not being pulled tight, and the wire being arranged not to touch itself in
any point; or by placing a knotted wire, with its ends united, in the interior of
the space. No amount of knotting or knitting, however complex, in the cord
whose axis indicates the line of tunnel, complicates in any way the continuity of
the space considered, or alters the simplicity of the barrier surface required to
stop the circulation. But it is otherwise when a knotted or knitted wire forms
part of the bounding solid. A single simple knot, though giving only double con-
tinuity, requires a curiously self-cutting surface for stopping barrier: which, in
its form of minimum area, is beautifully shown by the liquid film adhering to an
endless wire, like the first figure, dipped in a soap solution and removed. But no
complication of these types, or of combinationgof them with one another, eludes
the statements and formulee of § 57.

59. I shall now give a dynamical lemma, for the immediate object of preparing
to apply GREEN’s corrected theorem (J57) to the motion of a liquid through a
multiply continuous space. But later we shall be led by it to very simple
demonstrations of HeLmuoLTz’s fundamental theorems of vortex motion; and
shall see that .it may be used as a substitute for the common equations of
hydrokinetics.

(Lemma). An endless finite tube * of infinitesimal normal section, being given
full of liquid (whether circulating round through it, or at rest) is altered in shape,

* A finite length of tube with its ends done away by vuiting them together.
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Instalment, recetved Nov.—Dec. 1869 [§ 59 - § 64 (5)].

length, and normal section, in any way, and with any speed. The average value of
the component velocity of the fluid along the tube, reckoned all round the circuit
(irrespectively of the normal section), varies inversely as the length of the circuit.
59. (a). To prove this, consider first a single particle of unit mass, acted on by
any force, and moving along a smooth guiding curve, which is moved and bent
about quite arbitrarily. Let ¢ be the radius of curvature, and §, » the component .
velocities of the guiding curve, towards the centre of curvature, and perpen-
dicular to the plane of curvature, at the point P, through which the moving
particle is passing at any instant. Let { be the component velocity of the particle
-itself, along the instantaneous direction of the tangent through P. Thus & », {
are three rectangular components of the velocity of the particle itself. Let Z be
the component in the direction of Z, of the whole force on P. We have, by

elementary kinetics,

* This theorem (not hitherto published ?) will be given in the second volume of Tromson and
Tarr’s “ Natural Philosophy.” It may be proved analytically from the general equations of the
motion of a particle along a varying guide-curve (Warron, ¢ Cambridge Mathematical Journal,”
1842, February); or more synthetically, thus—Let /, m, n be the direction cosines of PT, the
tangent to the guide at the point through which the particle is passing at any instant; (z, v, 2)
the cii)-ordinates of this point, and (%, ¢, Z) its component velocities parallel to fixed rectangular axes.
We have

=l +my+ni; and @ =l + myj + nz,

da& L. .. s, . . .. : . .. .
Et:l:c+'my+nz+lx+my+nz=%+lz+my+7'lz-

-and from this

But it is readily proved (Tromsow and Tarr’s “ Natural Philosophy, § 9, to be made more explicit
on this point in a second edition) that the angular velocity with which PT changes direction is equal
to /(1% + 1i? + #%), and, if this be denoted by o, that

I m 4

3 2
®w O @

are the direction cosines of the line PK, perpendicular to PT in the plane in which PT changes
direction, and on the slde towards which it turns. Henee,

a¢
C—i—t——%+/cm

if x denote the component velocity of P along PK. Now, if the curve were fixed we should have
©=7z, by the kinematic definition of eurvature (Tmomsoy and Tarr, § 5); and the plane in which
PT changes direction would be the plane of curvature. But in the case actually supposed, there is

also in this plane an additional angular velocity equal to —z—g ,» and a component angular velocity
S :

. d
in the plane of PT and , equal to cTZ ; due to the normal motion of the varying curve. Hence

the whole angular velocity w is the resultant of two components,

g-{- ili—;é in the plane of £,

VOL. XXV. PART II. . ' 3R
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dg d s
where ¢ denotes the radius of curvature, and -d—f , Eg rates of variation of ¢ and »

from point to point along the curve at one time.

59. (b). Now, instead of a single particle of unit mass, let an infinitesimal

portion, y, of a liquid, filling the supposed endless tube, be considered. Let = be
the area of the normal section of the tube in the place where u is, and 8s the length

along the tube of the space occupied by it, at any instant; so that (as the density

of the fluid is called unity),

= @0s.

Further, let denote the rate of variation of the fluid pressure along the tube,

so that
gz_w@s

Thus we have, by (1),
: dé’. & + E 5 c_Ziy dp ‘ ' ' . (2)

dt — ¢ T T ds e

(c). Now, because the two ends of the arc 8s move with the fluid, we have, by

the kinematics of a varying curve,

dés _ df £ )
TELE-EE . )
and, tBerefore,
a(fds) _ ag ' _
1) 3+§( &_-a) L

Substituting in this for g—f its value by (2), we have

d(tds) _ [ .dE dn dp d
dt _(E— T ws T é‘ 8.,

or

T )

if ¢ denote the resultant fluid velocity; and §, diﬁ'erences for the two ends of the
arc 0s. Integrating this through the length of any finite arc P,P, of the fluid, its.

ends P, P,, moving with the fluid, we have

ax; (4’53) = (3¢ —1),— (g —p), N ()

the suffixes denoting the values of the bracketed function, at the points P, and

and
@ in the plane of 4.
ds
Hence & d dn
. E(Ei- d-g)-i"ﬂd—s:/»‘w,

and the formula (1) of the text is proved.
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P, respectively; and 3} denoting integration along the arc from P, to P,. Let
now P, be moved forward, or P, backward, till these pomts commde and the
arc P1P2 becomes the complete circuit; and let = denote integration round the
whole closed circuit. (6) becomes

dZ( é‘Bs)

= (75

and we conclude that 2{ds remains constant, however the tube be varied. This
is the proposition to be proved, as the * average velocity " referred to is found.
by dividing =({8s) by the length of the tube. ‘

59. (d). The tube, imagined in the preceding, has had no other effect than exert-
ing, by its inner surface, normal pressure on the contained ring of fluid. Hence
the proposition* at the beginning of § 59 is applicable to any closed ring of fluid
forming part of an incompressible fluid mass extending in all directions through
any finite or infinite space, and moving in any possible way; and the formule (5)
and (0) are applicable to any infinitesimal or infinite arc of it with two ends not
met. Thus in words—

Pror. (1.) The line-integr al of the tangential component velocity round any
closed curve of a moving jluid remains constant through all time.

And, Prop. (2), The rate of augmentation, per unit of time, of the space
integral of the velocity along any terminated arc of the fluid is equal to the

* Equation (6), from which, as we have seen, that proposition follows immediately, may be
proved with greater ease, and not merely for an incompressible fluid, but for any fluid in which the
density is a function of the pressure, by the method of rectilineal rectangular co-ordinates from the
ordinary hydrokinetic equations. These equations are—

Du d= Dw d= Duw d=

Dt~ dw’ DT dy DT d’
D : . L
if Di denote rate of variation per unit of time, of any function depending on a point or points moving
with the fluid; and = = C-Zg?, g denoting density. In terms of rectangular rectilineal co-ordinates
we have - ’
L0s = udx + vy + wdz.
Hence
D(%s)  Du Dz
Di Dt8 +u gy + &
Now .
Ddx D8y Déz
_t—z&z, =&v,  and =+ B _Su

These and the kinetic equations reduce the preceding to

D(&
—-—(Dé;f):usu + oy + wdo — %Br —_ %Sy - E;:;-Sz = 8[% (@ + »* + wﬁ’) — a—] . (8);

whence, by 3 integration, equation (6) generalised to apply to compressible fluids.
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excess of the value of 3¢° — p, at the end towards which tangential velocity is
reckoned as positive, above its value at the other end.

59. (¢). The condition that wdz +vdy +mwdz is a complete differential [proved
above (§ 13) to be the eriterion of irrotd#tional motion] means simply

That the jlow [defined § 60 (a)] is the same in all different mutually recon-
cilable lines from ome to another of any two points in the fluid ; or, which is the
same thing,

That the circulation [§ 60 (a)] is zero round every closed curve capable of being
contracted to a point without passmg out of a portion of the fluid through whick the
criterion holds.

~ From Proposition (1),' just proved, we see that this condition holds through
all time for any portion of a moving fluid for which it holds at any instant; and
thus we have another proof of LAGRANGE’s celebrated theorem (§ 16), giving us a
new view of its dynamical significance, which [see for example § 60 (¢g)] we shall
find of much importance in the theory of vortex motion.

(/). Butitis only in a closed curve, capable of being contracted to a point mtlwut
passing out of space occupied by irrotationally moving fluid, that the circulation
is necessarily zero, in irrotational motion. In § 57 we saw that a continuous fluid
mass, occupying doubly or multiply continuous space, may move altogether irro-
tationally, yet so as to have finite circulation in a closed curve PP'QQ'P, provided
PP'Q and PQQ are “irreconcilable paths” between P and Q. That the circula-
tion must be the same in all mutually reconcilable closed curves (compare § 57),
is an immediate consequence from the now proved [§ 59 (Prop. 2)] equality of
" the flows [§ 60 (@)] in all mutually reconcilable conterminous arcs. For by
leaving one part of a closed curve unchanged, and varying the remaining
arc continuously, no change is produced in the flow, in this part; and, by
repetitions of the process, a closed curve may be changed to any other recon-
cilable with it. ‘

60. Definitions and elementary propositions (a). The line-integral of the
tangential component velocity along any finite line, straight or curved, in a
moving fluid, is called the flow in that line. ~If the line is endless (that is, if
it forms a closed curve or polygon), the flow is called circulation. The use of
these terms abbreviates the statements of Propositions (2) and (1) of § 59 to the
following : —

[§ 59, Prop. (2)] The rate of augmentation, per unit of time, of the flow
in any terminated line which moves with the fluid, is equal to the excess of the
value of 1¢g* — p at the end from which, above its value at the end towards which,
positive flow is reckoned.

[§ 59, Prop. (1)]. The circulation in any closed line moving with the fluid,
remains constant through all time.

(0). If any open finite surface, lying altogether within a fluid, be cut into
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parts by lines drawn across it, the circulation in the boundary of the whole is
equal to the sum of the circulations in the boundaries of the parts. This is
obvious, as the latter sum consists of an equal positive and negative flow in each
portion of boundary common to two parts, added to the sum of the flows in all
the parts into which the single boundary of the whole is divided.

60. (c). Hence the circulation round the boundaries of infinitesimal areas,
infinitely near one another in one plane, are simply proportional to these
areas. : :

(d). Proposition. Let any part of the fluid rotate as a solid (that is, without
changing shape); or consider simply the rotation of a solid. The “ circulation”
in the boundary of any plane figure moving with it is equal to twice the area
enclosed, multiplied by the component angular velocity in that plane (or round
an axis perpendicular to that plane). Fer, taking 7, 8 to denote polar co-ordinates
of any point in the boundary, A the enclosed area, and « the component angular
velocity in the plane, and continuing the notation of § 59, we have

rdf

T E=regss

and therefore
2805 = w2t %Z;—:Ss = w3280 = o x 2A .
T ‘

(e). Definition. (For a fluid moving in any manner), the circulation round
the boundary of an infinitesimal plane area, divided by double the area, is called
the component rotation in *hat plane (or round an axis perpendicular to that
plane) of the neighbouring fluid. ‘

In this statement, the single word “rotation” is used for angular velocity of
rotation: and the definition is justified by (c) and (d); also by § 13 (2) ahove,
applied to (p) below. It agrees, in virtue of (p), with the definition of rotation
in fluid motion given first of all, I believe, by StokEs, and used by HeLmuOoLTZ
in his memorable “Vortex Motion,” also in TmomsoN and Tarr’s * Natural
Philosophy,” §§ 182 and 190 (7). '

(f). Proposition. 1If £ v, { be the components of rotation at any point, P, of
a fluid, round three axes at right angles to one another, and  the component
round an axis, making with them angles whose cosines are /, m, n,

=&+ + tn.

To prove this, let a plane perpendicular to the last-mentioned axis cut the other
threein A, B, C. The circulation in the periphery of the triangle ABC is, by (&),
equal to the sum of the circulations in the peripheries PBC, PCA, and PAB.
Hence, calling A and a, 3, y the areas of these four triangles, we have, by (o),

wA =%a + 98+ &y .
VOL. XXV. PART II. _ 3s
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But a, B, y are the projections of A on the planes of the pairs of the rectangular
axes; and so the proposition is proved.

It follows, of course, that the composition of rotations in a fluid fulfils the
law of the compositions of angular velocities of a solid, of linear velocities, of
forces, &ec.

60. (¢9). Hence, in any infinitesimal part of the fluid, the circulation is zero in
the periphery of every plane area passing through a certain line ;—the resultant
axis of rotation of that part of the fluid. But (a) the circulation remains zero in
every closed line moving with the fluid, for which it is zero at any time. Hence

(k). The axial lines [defined ()] move with the fluid.

(2). Definition. An axial line through a fluid moving rotationally, is a line
(straight or curved) whose direction at every point coincides with the resultant
axis of rotation through that point.

(7). Proposition. The resultant rotation of any part of the fluid varies in
simple proportion to the length of an infinitesimal arc of the axial line through
it, terminated by points moving with the fluid. To prove this, consider any in-
finitesimal plane area, A, moving with the fluid. Let o be the resultant rotation,
and 0 the angle between its axis and the perpendicular to the plane of A. This.
makes o cos § the component rotation in the plane of A ; and therefore Aw cos 6
remains constant. Now, draw axial lines through all points of the boundary of
A, forming a tube whose area of normal section is A cos . The resultant rota-
tion must vary inversely as this area, and therefore (in consequence of the in-
compressibility of the fluid) directly as the length of an infinitesimal line along
the axis. '

(k). Forin a surface by axial lines drawn through all points of any curve in
the fluid. The circulation is zero round the boundary of any infinitesimal area
of this surface; and therefore (§) it is zero round the boundary of any finite
area of it.

({). Let the curve of (%) be closed, and therefore the surface tubular. On this
surface let ABCA, A’'B’C’A’ be any two curves closed round the tube, and ADA’
any arc from A to A”. The circulation in the closed path, ADA’B'C’A’'DACBA,
is zero by (&). Hence the circulation in ABCA is equal to the circulation in.
A'B'C’A'—that is to say,

The circulations are equal in all circuits of a vortex tube.

(m). Definitions. An axial surface is a surface made up of axial lines. A
vortex tube is an axial surface through every point of which a finite endless path,
cutting every axial line it meets, can be drawn. Any such path, passing just
once round, is called a circuit, or the circuit of the tube. The rotation of a vortex
tube is the circulation in its circuit. A zoriex sheet is (a portion as it were of a
collapsed vortex tube) a surface on the two sides of which the fluid moves with
different tangential component velocities.
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60. (n.) Draw any surface cutting a vortex tube, and bounded by it. The
surface integral of the component rotation round the normal has the same value
for all such surfaces; and this common value is What we now call the rotation of
the tube. :

(0). In an unbounded infinite fluid, an axial tube must be either finite and
endless or infinitely long in each direction.* In an infinite fluid with a boundary
(for instance, the surface of an enclosed solid), an axial tube may have two ends,
each in the boundary surface; or it may have one end in the boundary surface,
and no other; or it may be infinitely long in each direction, or it may be finite
and endless. In a finite fluid mass, an axial tube may be endless, or may have
one end, but, if so, must have another, both in the boundary surface.

(p). Proposition. Applying the notation of (f), to axes parallel to those of
co-ordinates z, ¥, z, and denoting, as formerly, by », », , the components of the
fluid velocity at (=, y, 2), we have—

dw dv (A dw dv - du
E= %( ) ’7—%@—;&'), &= %dx cly>

The proof is obvious, according to the plan of- notation, &ec., followed in § 13
above. ]
(¢)- Hence by (f), (¢), and (5)—

/dS { ((ZlU dv (Z_zl' — iﬂ_) + n d’U (ZM) ) ‘/‘('ZLCZQ/ + L(ZJ <+ ’U’CZ"‘)

where //dS denotes integration over any portion of surface bounded by a closed
curve; f(udx + &ec.) integration round the whole of this curve; and (/, m, n) the

.direction cosines of any point (#, 7, #) in the surface. It is worthy of remark
that the equation of continuity for an incompressible fluid does not enter into the
demonstration of this proposition, and therefore #, », w may be any functions..
whatever of z, y, 2. In a purely analytical light, the result has -an important
bearing on the theory of the integration of complete or incomplete differentials.
It was first given, with the indication of a more analytical proof than the pre-
ceding, in THomson and Tarr’s * Natural Philosophy,” § 190 (j). »

(r). Propositions (%) () (») (o) of the present section (§ 60) are due to HELM-
noLTz; and with his integration for associated rotational and cyclic irrotational
motion in an unbounded fluid, to be given below, constitute his general theory of
vortex motion. (x) and (o) are purely kinematical ; (%) and (7) are dynamical.

(s). Henceforth I shall call @ circuit any closed curve not continuously reducible
to a point, in a multiply continuous space. I shall call different circuits, any

* Vortex tubes apparently ending in the fluid, for instance, a portion of fluid bounded by a.
figure of revolution, revolving round its axis as a solid, constitute no exception. Each infinitesimal
vortex tube in this case is completed by a strip of vortex sheet and so is endless.
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two such closed curves if mutually irreconcilable (§ 58); but different mutually
reconcilable closed curves will not be called different circuits.

60. (£). Thus, (z+1)ply continuous space, is a space for which there are n, and
only %, different circuits. This is merely the definition of § 58, abbreviated by
the definite use of the word circuit, which I now propose. The general termin-
ology regarding simply and multiply continuous spaces is, as I have found since
§ 58 was written, altogether due to HeLmMuoLTZ ; RIEMANN’S suggestion, to which
he refers, having been confined to two-dimensional space. I have deviated some-
what from the form of definition originally given by HeELmHBOLTZ, involving, as it
does, the difficult conception of a stopping barrier;* and substituted for it the
definition by reconcilable and irreconcilable paths. It is not easy to conceive the
stopping barrier of any one of the first three diagrams of § 58, or to understand
its singleness; but it is easy to see that in each of those three cases, any two
closed curves drawn round the solid wire represented in the diagrams are recon-
cilable, according to the definition of this term given in § 58, and therefore, that
the presence of any such solid adds only one to the degree of continuity of the
space in which it is placed.

(). If we call a partition, a surface which separates a closed space into two
parts, and, as hitherto, a darrier, any surface edged by the boundary of the space,
HermuOLTZ'S definition of multiple continuity may be stated shortly thus:—

A space is (n+ 1)ply continuous if n barriers can be drawn across it, none of
which is a partition.
(¢). HeLmuOLTZ has pointed out the importance in hydrokinetics of many-

valued functions, such as tan_l—g, which have no place in the theories of gravi-

tation, electricity, or magnetism, but are required to express electro-magnetic
potentials, and the velocity potentials for the part of the fluid which moves irro-
tationally in vortex motion. It is, therefore, convenient, before going farther,
that we should fix upon a terminology, with reference to functions of that kind,
which may save us circumlocutions hereafter.

(w). A function ¢ (2, y, 2) will be called cyclic if it experiences a constant
augmentation every time a point P, of which #, y, 2 are rectangular rectilineal
co-ordinates, is carried from any position round a certain circuit to the same

position again, without passing through any position for which either fc), dqs, or
O—C% becomes infinite. The value of this augmentation will be called the cyclic

* But without this conception we can make no use of the theory of multiple continunity in
hydrokinetics (see §§ 61-63), and Heumuorrz’s definition is, therefore, perhaps preferable after all
to that which I have substituted for it. Mr CLErx MaxwrLL tells me that J. B. Listixe has more
recently treated the subject of multiple continuity in a very complete manner in an article entitled
“ Der Census rdumlicher Complexe.”—Kdnigl. Ges. Giittingen, 1861, See also Prof, Cayrey ¢ On
the Partition of a Close”—FJil. Aag. 1861,
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constant for that particular circuit. The cyclic constant must clearly have the
same value for all circuits mutually reconcilable (§ 58), in space throughout
which the three differential coefficients remain all finite.

60. (z). When the function is cyclic with reference to several different
mutually irreconcilable circuits, it is called polycyclic. When it is cyclic for only
one set of circuits, it is called monocyclic.

ExamprLE—The apparent area of a circle as seen from=a point (z, g, 2)
anywhere in space, is a monocyclic function of z, %, 2, of which the cyclic con-
stant is 4.

The apparent area of a plane curve of the (2n)th degree, consisting of #
detached closed (that is finite endless) branches (some of which might be enclosed
within others) is an n-cyclic function, of which the » cyclic constants are essen-
tially equal, being each 4. :

Algebraic equations among three variables (z, 7, 2), may easily be found to
represent tortuous curves, constituting one or more finite, isolated, endless
branches (which may be knotted, as shown in the first three diagrams of § 58,
or linked into one another, as in the fourth and fifth). The integral expressing
what, for brevity, we shall call the apparent area of such a curve, is a cyclic
function, which, if polycyclic, has essentially equal values for all its cyclic con-
stants. By the apparent area of a finite endless curve (tortuous or plane), I mean
the sum of the apparent areas of all barriers edged by it, which we can dramw
without making a partition. ‘ :

It is worthy of notice that every polycyclic function may be reduced to a
sum of monocyclic functions.

(). Fluid motion is called cyclic unless the circulation is zero in every closed
path through the fluid, when it is called acyclic. Rotational motion is (¢) essen-
tially cyeclic. '

(z). Irrotational motion may [ § 59 (/)] be either acyclic or cyclic. If cyclic

it is monocyclic if there is only one distinct circuit, or polycyclic if there are several
distinct circuits, in which there is circulation. Tt is purely cyclic if the boundary
of the space occupied by irrotationally moving fluid is at rest. If the boundary
moves and the motion of the fluid is cyclic, it is acyclic compounded with cyclic.
' 61. (a). We are now prepared to investigate the most general possible irrota-
tional motion of a single continuous fluid mass, occupying either simply or multiply
continuous space, with for every point of the boundary a normal component
velocity given’ arbitrarily, subject only to the condition that the whole volume
remains unaltered. o

(). Genesis of acyclic motion. Commencing, as in § 3, with a fluid mass at
rest throughout, let all multiplicity of the continuity oi“the space occupied by it
be done away with by temporary barrier surfaces, 8,, 8, - . . stopping the circuits,
as described in § 57. The bounding surface of the fluid, which ordinarily consists

VOL. XXV. PART II. 3T
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of the inner surface of the containing vessel, will thus be temporarily extended to
include each side of each of these barriers. Let now, as in § 3, any possible
motion be arbitrarily given to the bounding surface. The Ilqmd is consequently
set in motion, purely through fluid pressure ; and the motion is [§§ 10-15, or 60, 59]
throughout irrotational. Hence irrotational motion fulfilling the prescribed sur-
face conditions is possible, and the actual motion is, of course (as the solution of
every real problem is), unambiguous. But from this bare physical principle we
could not even suspect, what the following simple application of GREEN’s equation
proves, that the surface normal velocity at any instant determines the interior
motion irrespectively of the previous history of the motion from rest.

61. (¢). Determinacy of irrotational motion in simply continuous space. In§ 57
(1), which is immediately applicable, as the volume is now simply continuous,
make ¢ = ¢, and put v = 0, so that ¢ may be the velocity potential of an
_ incompressible fluid. That double equation becomes the following single equa-

tion—
SIS+ 4 8 anayie= ff e,

where the surface integration //do must now include each side of each of the
barrier surfaces ,, 8,.... . Hence, if ¥¢ = 0 for every point of the -bounding
surface, we must have

de* |, de* _
L[//(dﬁ + dif? + z”) dudy dz=0

which requires that
dp

dx

de
ay

do

=0, =2

=0, = 0:

that is to say, if there is no motion of the boundary surface in the direction of the
normal, there can be no motion of the irrotational species in the interior ; whence
it follows that there cannot be two different internal irrotational motions with
the same surface normal component velocities. Thus, as a ﬂpartieular case,
beginning with a fluid at rest, let its boundary be set in motion; and brought
again to rest at any instant, after having been changed in shape to any extent,
through any series of motions. The whole liquid comes to rest at that instant.
A demonstration of this important theorem, which differs essentially from the
preceding, and includes what the preceding does not include, a purely analytical
proof of the possibility of irrotational motion throughout the fluid, fulfilling the
arbitrary surface-condition specified above, was first published in TEoMsoN and
Tarr’s “ Natural Philosophy,” § 817 (3), and is to be given below, with some
variation and extension. In the meantime, however, we satisfy ourselves as to
the possibility of irrotational motions fulfilling the various surface-conditions with
which we are concerned, because the surface motions are possible and require
the fluid to move, and [§§ 10-15, or § 59] because the fluid cannot acquire
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rotational motion through fluid pressure from the motion of its boundary; and
we go on, by aid of GREEN’s extended formula[§ 57 (7)], to prove the determinate-
ness of the interior motion under conditions now to he specified for multiply
continuous space, as we have done by his unaltered formula [§ 57 (1)] for simply
continuous space. :

62. Glenesis of Cyclic Irrotational Motion.—In the case of motion considered
in § 61, the value of the normal component velocity is not independently arbitrary
over the whole boundary, but has equal arbitrary values, positive and negative,
on the two sides of each of the barriers 8,, 8,,.&c. We must now introduce a
fresh restriction in order that, when the barriers are liquefied, the motion of the
fluid may be irrotational throughout the space thus re-opened into multiple
continuity. For although we have secured that the normal component velocity
is equal everywhere on the two sides of each barrier, we have hitherto left the
tangential velocity unheeded. If they are not equal on the two sides, and in
the same direction, there will be a finite slipping of fluid on fluid across the
surface left by the dissolution of the infinitely thin barrier membrane; constitut-
ing [§ 60 (m) above], as HELMBOLTZ has shown, a * vortex sheet.” The analytical
expression of the condition of equality between the tangential velocities is that
the variation of the velocity potential in tangential directions shall be equal on
the two sides of each barrier. Hence, by integration, we see that the difference
between the values of the velocity potential on the two sides must be the same
over the whole of each barrier. This condition requires that the initiating pres-
sure be equal over the whole membrane. For, at any time during the instituting
of the motion, let p,, p, be the pressures at two points P,, P, of the fluid, and
moving with the fluid, infinitely near one another on the two sides of one of
the membranes, so that the pressure =, which must be applied to the membrane
to produce this difference of fluid pressure on the two sides, is equal to p, — p, in
the direction opposed to p,. And let ¢, ¢, be'the velocity potentials at P, and
P,, so that if /ds denote integration from P, to P,, along any path P,PP, what-
ever from P, to P,, altogether through the fluid (and therefore cutting none of
the membranes), and { the component of fluid vel%city along the tangent at any
poin’ of this curve, we have ‘

L Stds =9, — ¢, . . . . . (1).
Hence, by (6) of § 59, v
Wt o yg-0p . . . . @
where ¢,, ¢, denote the resultant fluid velocities at P, and P,. Now, the normal
component velocities at P, and P, are necessarily equal; and thecefore, if the
components parallel to the tangent plane of the intervening membrane are also
equal, we have

= qe
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and the preceding becomes

d—("-z[%’i) == N G )
But if the tangential component velocities at P, and P, are not only equal, but
in the same direction, ¢, — ¢, must, as we have seen, be constant over the
membrane, and therefore = must also be constant.

Suppose now that after pressure has been applied for any time in the manner
described, of uniform value all over the membrane at each instant, it is applied
no longer, and the membrane (having no longer any influence) is done away
with. The fluid mass is left for ever after in a state of motion, which is irrota-
tional throughout, but cyclic. The “ circulation” [§ 60 («)], or the cyclic constant
being equal to ¢, — ¢,, for every circuit reconcilable with P,PP,P, is given by the
equation

o= — fwdt . . . ... (),

/dt denoting a time-integral extended through the whole period during which =
had any finite value. '

The same kind of operation may be performed, on each of the » barriers
temporarily introduced in § 61 to reduce the (n+1)fold continuity of the space
occupied by the fluid, to simple continuity.

The velocity potential at any point of the fluid will then be a polycyclic func-
tion [§ 60 (#)] equal to the sum of the separate values corresponding to the
pressure separately applied to the several barriers. Thus we see how a state of
irrotational motion, cyclic with reference to every one of the different circuits of
a multiply continuous space, and having arbitrary values for the corresponding
cyclic constants, or circulations, may be generated. But the proof of the
possibility of fluid motion fulfilling such conditions, founded on this planning out
of a genesis of it, leaves us to imagine that it might be different according to the
infinitely varied choice we may make of surfaces for the initial forms of the
barriers, or according to the order and the duration of the applications of
pressure to them in virtue of which these figures may be changed more or less,
and in various ways, before the initiating pressures all cease; and hitherto
we have seen no reason even to suspect the following proposition to the con-
trary.

63. (Pror.) The motion of a liquid moving irrotationally within an (z+1)ply
continuous space is determinate when the normal velocity at every point of the
boundary, and the values of the circulations in the % circuits, are given.

This is proved by an application of GrEEN’s extended formula (7) of § 57,
showing, as the simple formula (1) of the same section showed us in § 61 for
simply continuous space, that the difference of the velocity potentials of two
~ motions, each fulfilling this condition, is necessarily zero throughout the whole
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fluid. Let ¢, ¢ be the velocity potentials of two motions fulfilling the prescribed
conditions, and let

Yr=p—¢.

At every point of the boundary (the barriers not included) the prescribed con-
ditions require that e¢=3¢, and therefore dy=0. Again, the cyclic constants
for ¢’ are equal to those for ¢; those for ¢, being their differences, must there-
fore vanish. Hence, if the ¢ and ¢’ of § 57 (7) be made equal to one another and
to avoid confusion with our present notation we substitute s for each, the secend
members of that double equation vanish, and it becomes simply \

2 2 g
/]] ((Z\ff Cflﬂjf f?{zfz ) dedy dz=0;

which, as before (§ 61), proves that ¥=0, and therefore ¢'=¢ ; and so establishes
our present proposition.

.
<y

ExampLE (1). The solution ¢= taﬁlg considered in § 56, fulfils LAPLACE’S equa-

tion, V’¢=0; and obviously satisfies the surface condition, not merely for the
annular space with rectangular meridional section there considered, but for
the hollow space bounded by the figure of revolution obtained by carrying a
closed curve of any shape round any axis (OZ) not cutting the curve; which, for
brevity, we shall in future call a Zollow circular ring. Hence the irrotational
motion possible within a fixed h'illow circular ring is such that the velocity poten-
tial is proportional to the angle between the meridian plane through any point,
and a fixed meridian.

ExamprLE (2). The solid angle a, subtended at any point (z, v, 2), by an
infinitesimal plane area, A, in any fixed position, fulfils LApLACE’s equation v?a=0.
This well-known proposition may be proved by taking A at the origin, and per-
pendicular to OX, when we have

\

Az d ~1
CET e ATy

for which V?a =0 is verified. , :

The solid angle subtended at (z, , 2) by any single closed circuit is the sum
of those subtended at the same pomt by all parts into which we may divide any
limited surface having this curve for its bounding edge. [Consider particularly
curves such as those represented by the first three diagrams of § 58.] Hence
if we call ¢ the solid angle subtended at (=, y, 2) by this surface, LAPLACE'S equa-
v is fulfilled. Hence ¢ represents the velocity potential of the irrotational
motion possible for a liquid contained in an infinite fixed closed vessel, within
which is fixed, at an infinite distance from the outer bounding surface, an in-

finitely thin wire bent into the form of the closed curve in question.
VOL. XXV, PART IL 3vu
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The particular case of this example for which the curve is a circle, presents
us with the simplest specimen of cyclic irrotational motion not confined [as that
of Example (1) is] to a set of parallel planes. The velocity potential being the
apparent area of a circular disc (or the area of a spherical ellipse) is readily found,
and shown to be expressible readily in terms of a complete elliptic integral of the
third class, and therefore in terms of incomplete elliptic functions of the first
and second classes. The equi-potential surfaces are therefore traceable by aid of’
LreceNDRE's tables. But it is to HeumMHOLTZ that we owe the remarkable and
useful discovery, that the equations of the stream lines (or lines perpendicular to
the equi-potential surfaces) are expressible in terms of complete integrals of the
first and second classes. They are therefore easily traceable by aid of LEGENDRE'S
tables. The annexed diagram, of which we shall make much use later, show
these curves as calculated and drawn by Mr MacrarvaNe from HermuOLTZ'S
formula, expressed in terms of rectangular co-ordinates. An improved method
of tracing them is described in a note by Mr CLERK MAXWELL, which he has
kindly allowed me to append to this paper. ‘

ExampLe 8. The motion described in Example 2 will remain unchanged out-
side any solid ring formed by solidifying and reducing to rest a portion of the
fluid bounded by stream lines surrounding the infinitely thin wire. Thus we
have a solid thick endless wire or bar forming a ring, or an endless knot as
illustrated in the first three diagrams of § 59, of peculiar sectional figure depend-
ing on the stream lines round the arbitrary curve of Example 2; and the cyclic
irrotational motion which, if placed in an infinite liquid it permits, is that whose
velocity potential is proportional to the solid angle defined geometrically in the
general solution given under Example 2.

64. Kinetic energy of compounded acyclic and polycyclic irrotational motion—
kinetico-statics. The work done in the operation described in § 62 is calculated
directly by summing the products of the pressure into an infinitesimal area of
the surface, into the space through which the fluid contiguous with this area
moves in the direction of the normal, for all parts of the surface, whether
boundary or internal barrier, where the genetic pressure is applied, and for all
infinitesimal divisions of the whole time from the commencement of the motion.

(a). Let = denote the work done, and /d? time-integration, from the beginning
of motion up to any instant. At any previous instant let p be the pressure,
¢ the velocity, and ¢ the velocity potential, of the fluid contiguous to any
element do of the bounding surface, % the difference of fluid pressures on the two
sides of any element, ds, of one of the internal barriers, and N the normal com-
ponent of the fluid velocity contiguous to either do or ds. The preceding state-~
ment expressed in symbols is

W =/t —[[pNdo + Z [fkNds] . . . ) (6),
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= denoting summation for the several barriers if there are more than one.
According to the general hydrokinetic theorem for irrotational motion [§ 59 (6)
compare with § 31 (3)], with ¢ eaxpressed in terms of the co-ordinates of a point
moving with the fluid, we have

__ q9 2 7
p_’c_lt-'_%g . - . . . . (1)

Now, let us suppose the pressure to be impulsive, so that there is infinitely little
change of shape either of the bounding surfacéor of the barriers during the time /dz.

This will also imply that C;i; is infinitely great in comparison with 1¢°; so that
7 .
p=—3 - - B

And according to the notation of § 57 we have
N=¥ . . . . . . O

Also % is constant over each barrier surface.

Hence (6) becomes
W :ﬁt[[/gf Rodo + 2k /;mi' . . . (10

64. (b). The initiating motion of the bounding surface and the pressures on the
barriers may be varied quite arbitrarily from the beginning to the end of the
impulse; so that the history within that period of the acquisition of the pre-
scribed final velocity may be altogether different, and not even simultaneous, in
different parts of the bounding surface. Thus %, and %, may be quite different
functions of #; provided only /% ,d¢ and /%,d¢ have the prescribed values, which
we shall denote by ¥, and &, respectively.

(¢). But, for one example, we may suppose ¢ to have at each instant of /d¢
everywhere one and the same proportion of its final value; so that if the latter
denoted by ®, and if we put '

.
g =™ . . . . . .,

m is independent of co-ordinates of position, but may of course be any arbitrary
function of the time. Hence, observing that

dm
ﬁt’)’n _L‘Tt_ =3,

as the final value of m is 1, (10) becomes

W':ﬂ//@h@da}zkffnq)dq] ¢ E))

(d). The second member of this equation doubled agrees with the two equal
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second members of (7) § 57 with ¢ and ¢’ each made equal to ®. And the first
‘member of that equation becomes twice the kinetic energy of the whole motion.
Hence, when ¢'=¢, and V2¢=0, (7) of § 57 expresses the equation of energy
for the impulsive generation, of the fluid motion corresponding to velocity potential
¢, by pressures varying throughout according to the same function of the time;
the first member being twice the kinetic energy of the motion generated, and the
second twice the work done in the process.

64. (¢). As another example, let us suppose the initiating pressures to be so
applied as first to generate a motion corresponding to velocity potential ¢, and
after that to change the velocity potential from ¢ to ¢ +¢’, denoting by ¢ and ¢’
any two functions, such that ¢ +¢’'=®’, and each fulfilling LarLACE’'s equation :
and let the augmentation from zero to ¢, and again from ¢ to ¢ +¢" be uniform
through the whole fluid. The work done in the first process, found as
ahove (12), '

1 [feBp do+2x /0 ds] . . . . (13),

if x,, x,, &c., denote the cyclic constants relative to ¢, as %, %,, &c., relatively to
®, and the additional work done in the second process, similarly found, is

e 2Vp+ D) do+ 26 [f(Be +R0)ds] . . . (14).

(f). Now, as we have seen (§ 63) that the actual fluid motion depends at
each instant wholly on the normal velocity at each point of the bounding surface
and the values of the cyclic constants, it follows that the work done in generating .
it ought to be independent of the order and law, of the acquisition of velocity
at the bounding surface, and of the attainment of the values of the several cyclic
constants. Hence, the the sum of (13) and (14) ought to be equal to (12). But
if, for ® in (12) we substitute ¢ + ¢’, the difference between its value and that of
the sum of (13) and (14) is found to be

%[/f(?bp'— o'8p) do + E(K/]hga'dq—-/c'ffhgbdc)] . . . (15);

which, being the half the difference between the two equal second members of
(7) § 57 for the case of

vip=0 and v?'=0,

is equal to zero. Hence, the equality of the second members of (7) § 57, con-
stitutes the analytical reconciliation of the equations of energy for different modes
of generation of the same fluid motion.



