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SLOW THERMALLY OR FRICTIONALLY
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IN A CIRCULAR VORTEX
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Abstract: A quasi-static theory of meridional motion in a stable circular vortex,
caused by sources of heat or angular momentum, is developed. The stream function
of the meridional motion is found to satisfy a generalized Poisson equation in the
meridional plane. In the vicinity of & point-source of angular momentum, the field of
meridional motion is shown to have the character of a distorted field of a dipole, with
elliptical streamlines. It is found that the meridional motion will take place mainly in
the directions where the stability of the vortex is smallest, and that the speed of the
meridional circulation, for given sources of heat or angular momentum, will increase
with decreasing stability of the vortex. The accompanying changes in the kinetic energy
of the vortex motion, and of the vortex structure, are discussed. An attempt is made
to apply the theory to possible meridional currents in the earth’s atmosphere.

Preface.

These investigations have been carried out as part of a project
on synoptic and theoretical investigations of the circulation of the
troposphere. The project is sponsored partly by the Norwegian Academy
of Science through its “Committee on Variations in Weather and
Climate”, and partly by the Norvegian Council for Academic Research.

1. Circular vortex in the state of balance.

The system under consideration in this study is a compressible
fluid performing a circular vortex motion in a gravity field. The speed
of rotation, the thermodynamical state of the fluid particles and the
gravity potential are supposed to be constant along each circular stream-
line, so that the vortex is symmetric with respect to its axis. It will then
be sufficient to consider the conditions in one meridional plane. The
vortex motion will remain stationary as long as no friction is operating,
and no heat is added to, or withdrawn from the fluid particles. Such
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AXI1s

Fig. 1. Coordinates in the meridional plane.

a stationary circular vortex must be characterized by a balance between
the force of gravity, the pressure force and the centrifugal force. We
shall express this balance mathematically.

In a meridional plane, let R denote distance from the axis, and
2, height above a straight line drawn perpendicular to the axis (Fig. 1).

" Furthermore, let @ denote gravity potential, p pressure and a specific

volume. The field of motion may be characterized either by the absolute
angular velocity w of the motion around the axis, or by the angular
momentum per unit mass (or circulation per radian of a circular
streamline),
(1) c =R

The quantities @, p, a, and ¢ are constant for each circular stream-
line, but are supposed to vary from one circular streamline to another.
These quantities may therefore be regarded as functions of R and , and
their fields may be represented by lines @ = constant, p = constant,
a = constant and ¢ = constant drawn in a meridional plane.

With the above notation, the centripetal acceleration is ¢*/R®, so
that the equations expressing the balance of the forces in the direction
parallel to, and normal to the axis, respectively, are

. = (52, <)

¢ 00 ap
@ =~ (&), b),
Here the subscript denotes the quantity that is held constant during
the differentiation.
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It has been shown by Sutcliffe (1947) and independently by the
author (1949) that it is often advantageous to use pressure instead of
height as an indenpendent variable in the equations governing the
motion of the atmosphere. A similar advantage is attained in the present
case by using R and p as independent variables instead of R and z.
This means that the dependent variables ¢, a and ¢ are regarded as
functions of R and p, so that we may speak of the fields of the
dependent variables in the Rp-plane. It is clear that knowledge of the
field of a quantity in the Rp-plane does not involve knowledge of
the field of the same quantity in the Rsz-plane, unless we know also
the field of pressure in the Rz-plane.

The transformation into the independent variables R and p may
be carried out simply by multiplying egs. (2) and (3) by dz and dR,
respectively, and adding. This gives

62

(4) d® = —adp + =z dR.

Hence we obtain, when @ is regarded as a function of R and p,

9 7=

o0 c

(6) - (ﬁ)p = 2%
which is the form assumed by the system (2), (3) when R and p are
independent variables.

It should be emphasized that the derivative with respect to R in eq.
(6) means change along the isobar (at constant p), whereas the deri-
vatives with respect to R in eq. (3) mean changes normal to the axis
(at constant z). Throughout the following, the partial derivatives will
have the same meaning as in egs. (5) and (6), since R and p will be
used consistently as independent variables. Thus there can be no con-
fusion as to the meaning of these symbols, and the subscripts will
therefore be dropped.

Our coordinate system R, p fails in points where the isobars
are parallel to the axis, i. e. in “equatorial” points. The occurrence
of such points would require a special investigation of the validity
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of our equations. We shall not here concern ourselves with this
difficulty, and will therefore have to exclude such “equatorial” points
from our considerations.

Egs. (5) and (6) show that the fields of a and c¢ in the Rp-plane
are known if we know the function @ (R, p). Furthermore, it follows
that the fields of a and ¢ are not independent of each other. Elimination
of @ between (5) and (6) gives

(7) R 35 ap

showing that in the state of balance, the variation of angular momentum
(or angular velocity), in the direction parallel to the axis is related to
the variation of a along the isobars, i. e. to the baroclinity. In particular,
it follows that in a barotropic vortex, where a does not change along
the isobars, the angular velocity is constant along each line parallel
to the axis. These results have been derived by V. Bjerknes (1923).

It will be assumed in the following that the thermodynamic state
of the fluid is characterized by two independent quantities. Taking
pressure and entropy per unit mass, o, to characterize the state,
we may write

(8) a=a (/D) o).

The partial derivative of this function with respect to entropy will
be denoted by

Jda
(9) p=p (p, 0) = (%)p-

Usually u is a positive quantity. The best known example of negative
p is water below + 4° centigrade. For an ideal gas, u = a/c,, where
c, means specific heat at constant pressure.

On account of (g9), eq. (7) may now be written

1 L
= — u

( Gt
1) R*3p IR

since 3 a/d R means differentiation at constant pressure.
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2. Quasi-static theory of slow meridional circulations.

Let us now assume that heat sources and sinks, and frictional
forces, distributed symmetrically with respect to the axis of the vortex,
are operating in the fluid. This will not destroy the axial symmetry
of the vortex. The heat sources and sinks, together with the frictional
dissipation, bring about a change with time of the entropy of the fluid
particles; and the frictional forces will in general have a torque with
respect to the axis, and thus cause a change with time of the angular
momentum of the particles. As a result, the balance of the vortex will
be disturbed, and meridional motions, superimposed upon the vortex
motion, will take place.

The radiative and turbulent heat flux and the turbulent frictional
stress depend upon the fields of motion and temperature within the
vortex. Unfortunately, the manner in which the heat flux and the
frictional stress depend upon the fields of motion and temperature is
only poorely known. It is obviously of importance to see what con-
clusions can be drawn concerning the meridional motion without making
use of these uncertain relationships. To this purpose, we shall in the
following assume the sources of heat and angular momentum to be given,
and investigate some properties of the resulting meridional motion.

The resulting meridional motion will have the character of a forced
oscillation of a quite complicated type. We shall simplify the problem
by assuming the sources of heat and angular momentum to be weak,
and to change so slowly with time, that resonance phenomena will not
occur. The resulting meridional currents may then be considered as
being so slow that the accelerations due to these currents are small
compared to the centripetal accelerations. The vortex will be very close
to the state of balance all the time, so that we may apply the quasi-
static approximation: we assume the vortex to be in the state of balance
at all times, and determine the meridional motion necessary to maintain
this balance. We shall see that the requirement of the maintenance of
the balance is sufficient to determine the meridional motion uniquely.

Since the motion is no longer stationary, our dependent variables
@, ¢, a, and o must now be regarded as functions of the three
independent variables &, p and time £ The quasi-static approximation
means that the balance equations (5) and (6) are regarded as being
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valid for all values of 2. These equations may therefore be differentiated
partially with respect to £ Thus we obtain

3 3P  3a 30

—— = — u—

(r1) = = 1
: ap ot 3¢ 3¢

” ERT Y,
3R ¢ R® a3t
Here eq.(9) has been used to express 9a/3¢ in terms of 36/3¢; this is poss-
ible because the symbol 3a/3¢ means differentiation at constant R and 22
Denoting by Q the heat given to the fluid per unit mass and unit
time, including the frictional dissipation, and by 7 the absolute
temperature we have

(13) =

Do _ 9
dt 7’

where D/d¢ means the individual (or substantial) derivative.
Furthermore, when the torque of the frictional force with respect
to the axis is denoted by y, we have

D ¢?
dat

(14) =Z2cy.
When R, p and ¢ are independent variables, the individual derivative
may be written as

(15) -D—=~+ﬁ—+l?—

where p and R are the individual derivatives of p and R respectively.
It will be seen that g and R represent a kind of meridional velocity
components, so that the fields of p and R characterize the meridional
circulation.

When the individual derivative in (r3) and (14) are expanded in
accordance with (15), we find

20 d0 - d0 [0,
6 il s A
(16) at+pap+RaR T
act  act . act
(17) a_t+Pap+R:ﬁ:2”5'
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Eliminating 86/3¢ and 8c’/a¢ between (11), (12), (16) and (17), we
obtain the system

3 90 a0 30 o w0

PR —_ — R ==

(18) a5 ot T3P THER T
2 00 1 ac*, [ 1 3ac. 2y

(x9) Rt  Rap TRIRNT R

In addition to these two equations we will have to make use of the
equation of continuity, which is derived below, in the coordinates
R, p and ¢

3. The equation of continuity.

Fig. 2 shows an infinitesimal parallellogram in the meridional
plane, bounded by two isobars (p and p + dp) and two lines parallel
to the axis (R and R + dR). The length of the sides parallel to

the axis is

(20) ds =

dp = =dp
8z

according to equation (2). Here g, means the component parallel to
the axis of the acceleration of gravity.

We consider the ring-shaped volume formed by rotating the
parallellogram around the axis. The mass contained within this volume is

(21) M:andez‘ézan dRdp.
Axis
i d
——R dR Prap

Fig. 2. Area element in the meridional plane.
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Next we compute the flux of mass out of the same volume.
The net flux out of the two cylindrical surfaces is seen to be
dR 3/3R (ZanzR/a) and the net flux out of the two isobaric
surfaces dp 3/3p (2 n R dR p/g.). The total flux out of the volume is thus

1 3 RR ap)
- . + =L,
(22) N ZﬂRdep(R R o 7 o
Consequently the equation of continuity is N = — 3M/3¢, or
1 3 Ri?) i(z)__i(L)
(23) RSR(gz +8p g at\g/)’

Since 3/3¢ means differentiation at constant R and p, the right-
hand side of this equation is seen to represent the rate of change of
(—1/g;) experienced by an observer moving parallel to the axis with
the speed of the ‘isobars. In a stationary field of gravity, this term is
therefore due solely to the motion of the isobars. In many cases, g,
will vary so slowly with 2z, and the motion of the isobars in the
meridional plane will be so slow, that the right-hand side of (23) will
be negligible. This is the case in the atmosphere, where the vertical
velocity of the isobaric surfaces is of the order of magnitude
0.1—1 cm/sec. We will assume in the following that the right-hand
term of (23) can be disregarded, so that the equation of continuity

becomes )
1 3 (RR) 6 9 p)*
(24), R9R<g2)+ap(gz — 0
We may satisfy this equation by writing
: S __ & oy & oY
R == — =—= —=
(25) Rap T R

where v (R, p, £) is a kind of stream function for the meridional motion.
The curves y = constant are the streamlines of the meridional motion
in the Rp-plane. These will generally differ from the streamlines in
the Rz-plane. However, the difference will be slight when the motion
of the isobaric surfaces is slow; and the streamlines in the Rp-plane
will coincide with the streamlines in the Rz-plane if the pressure
field is stationary.
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4. The differential equation for the stream function.

Substitution of (25) into the system (18), (19) gives

(26) “%%+A§z+BZZ £
(27) 7t BIRTCo = F,
where we have put

T

B — 1“52 8%% = — % a—;(owing to eq. (10))
(28) 'C=}il§—cj

Regarding 3®/3¢ and v as the unknown functions, egs. (26) and (27)
are seen to form a system of linear, first order differential equations
in the two space coordinates K and p, whereas time drops out as an
independent variable. In the quasi-static theory, the determination of
the meridional motion is therefore not an initial value problem; the
meridional motion depends only on the instantaneous sources of heat
and angular momentum and the instantaneous structure of the vortex.
Eliminating 2 ®/3¢ between (26) and (27), we obtain

3 oy dy oL  3F
< 2B el
(=29) aR<A9R+Bap)+ p( Y Caﬁ) “3R 3
which is the linear, second order differential equation satisfied by the
stream function. It will be noted that the equation is self-adjoint.
The coefficients 4, B and C of this equation appear also in the

theory of axially symmetric oscillations of an adiabatic and frictionless
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circular vortex. This theory has been worked out by Solberg (1936),
Hoiland (1941), and others.! It follows from this theory that the frequency
v of oscillations with meridional streamlines parallel to a given direction
defined by a certain value of dp/d R is given by

R [g( @), e
(30) v—gzsm ¢[A(dR) ZBdR+ le,

where @ is the angle in the meridional plane between the axis and
the streamline direction. If we take the streamlines to be parallel to
the axis, we obtain purely gravitational oscillations. In this case we
have d R =0, sin ¢ =0, and dR/sin ¢p—>dz= — adplg, and we
obtain for the frequency v,

1 —_—
(31) : Vg = }/Rng.

a

If we take the streamline direction to be along the isobars, we obtain
oscillations of purely inertial character. In this case dp = 0, and the

frequency »; is

. V C
(32) y; = | sin g, | Pt
where @, is the angle in the meridional plane between the axis and
the isobars. From egs. (31) and (32) we see that the coefficient A may
be regarded as a measure of the gravitational stability in the vortex,
and C as a measure of the inertial (rotational) stability.

It follows from the Solberg — Heiland theory that the vortex may
be unstable, even when 4 and C are both positive, if the baroclinity,
measured by B, is sufficiently large. As shown by Heiland (1941),
the stability criteria are obtained by demanding that »* in eq. (30) is
positive for all streamline directions, 1. e. that the quadratic form within

the brackets in eq. (30) is positive definite. This gives the stability criteria®

I A list of the contributors to this theory is given by Holmboe (1948).
2 Heiland (1941) defines stability in a slightly wider sense, including also the
case when the quadratic form is zero for one direction, and positive for all other

directions. The deviation from Heiland’s admittedly correct definition is made for

the sake of convenience.
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(33) 6*>0, 4>0, C>0,
where
o (g (00 3 3 Bo
(34) F=AC— B =" (aR 3 R ap)

The differential equation for the stream function (29) is seen to be
of the elliptic, parabolic or hyperbolic type, according as 6220. In
particular, we obtain the result that the differential equation for the
stream function (29) is of the elliptic type for all stable vortices’.

If an unstable vortex were exposed to sources of heat or angular
momentum, then unstable revolutions would in general be released,
and the deviations from the state of balance would become appreciable.
This contradicts the assumption on which the derivation of eq. (29)
was based, namely, that the vortex is approximately in the state of
balance at all times. Consequently, eq. (29) applies to stable vortices
only? We must therefore assume that the inequalities (33) are satisfied
everywhere in the meridional plane. This implies that the differential
equation (29) for the stream function is ot the elliptic type, thus having
the character of a generalized Poisson equation. Together with a suitable
boundary condition, eq. (29) will determine the stream function uniquely.

5. The boundary condition.

If the fluid is enclosed within a rigid, thorus-shaped wall, which
intersects the meridional plane along a closed curve S, then the boundary
condition must express that the meridional motion on the boundary
curve has no component normal to this curve. This may be expressed
as a linear homogeneous equation in R and Do/dt,

Do

say. Utilizing egs. (5), (6), and (25), this can be written

! This statement cannot be reversed. In the case of an unstable vortex, the
differential equation for the stream function may be elliptic, parabolic or hyperbolic.
2 The possibility of a vortex with one indifferent direction, corresponding to a
parabolic differential equation for the stream function, will not be considered here.
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ag: oy ¢ & oy

=0 .

(35) at+RaR+(R“+b) 3p on 5

The boundary condition would thus involve both of the unknown
functions 3®/3¢ and . To be able to utilize this boundary condition,
one would have to go back to the system (26), (27).

For simplicity, however, we shall here assume that our boundary

curve S is a fixed, known curve in the coordinates R, p. Since S is

a streamline in the Rp-plane, we know that y must be constant along
S; this constant may without restriction be set equal to zero. The
boundary condition is therefore

(36) w =0 on S.

This boundary condition, together with differential equation (29), deter-
mines vy uniquely inside .S. The proof follows from Green’s theorem,
in the same way as in the case of the ordinary Poisson equation.

Our boundary value problem (29), (36) is also encountered in
other branches of physics, e.g. equilibrium of a loaded, anisotropic
membrane, and potential distribution in an anisotropic, conducting
sheet with sources and sinks of electricity. The numerical solution of
our boundary value problem by means of relaxation methods has been
discussed by L. Tasny-Tschiassny (1949). No numerical solutions will
be given in this paper; instead, we shall derive some general properties
of the solution.

6. The Green function. Properties of the solution
in the vicinity of a jump in £ or F.

The solution of the problem (29), (36) may be written in the form

QFE QL
52 () ]“Wm

Ry, py Rosro

(37) w(R,p):” (R, p, Ry, po)

Y

where » is the region of the Rp-plane enclosed by the boundary
curve S, and G is the Green function of the problem. We notice
that if 3 £/0 R and 9 //3p vanish everywhere in y, i.e. if £ is constant
along each isobar, and F constant along each line parallel to the axis,
then the solution is v = 0, and there will be no meridional motion
in the Rp-plane. To set up meridional circulations, the sources of heat
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and angular momentum must be distributed in such a manner that £
varies along the isobars, and F varies in the direction parallel to
the axis.

The Green function represents the solution in the case of a
sudden change (jump) of E along the isobars, or a sudden change of
F along the lines parallel to the axis. More precisely, G represents
the solution (apart from a constant factor) when dE/3R and 3 //3p
vanish everywhere except at the point R, p,, where 3 £/d R or 3 F/3 p
is infinite. The Green function has. a logarithmic singularity in the
“jump” in £ or F, i.e. in the point R = Ry, p = p,. The behavior
of G in the vicinity of this point is considered in some detail in the
Appendix at the end of this paper. It is shown there that the principal
part G, of G in the vicinity of R, p, is

1
(38) G, = 2

5 I [C(R— Ry —2 Bo(R— Ro)p—po) + Aolp—po)”),
0

where the subscript “0” denotes values at the point R, po. Apart
from a constant factor, this formula represents the solution in the
vicinity of a jump in £ or F.

The formula (38) may be regarded as a generalization of the
formula for two-dimensional, irrotational motion around a rectilinear
vortex filament, or for the magnetic field around a linear electric
current. The only difference is that the field represented by (38) is
distorted as a result of different stability conditions in different directions,
so that we obtain elliptical streamlines instead of circular ones. The
elliptical streamlines (G, = constant) in the Rp-plane are seen to be
conformal and concentric, with the jump (R,, p,) in the center. Since
we are considering the field in the vicinity of the jump only, we may
regard p as a linear function og R and z. The streamlines are there-
fore conformal and concentric ellipses also when represented in the
Rz-plane (Fig. 3).

Jf the meridional motion is produced by a jump in £ along an
isobar, the sense of the circulation along the elliptical streamlines is
seen to be such that the particles are moving toward lower pressure
(# negative) on the side of the jump where £ is larger, and toward
higher pressure (p positive) on the other side of the jump, where E
~is smaller. If the motion is produced by a jump in F along a line
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Fig. 3. -Meridional streamlines in the vicinity of a jump in E or F.

parallel to the axis, then the particles will move away from the axis
(R positive) on the side of the jump where / is larger, and toward
the axis (R negative) on the other side of the jump, where F is smaller.

Since 0 may be regarded as a measure of the stability of the
vortex, it follows from (38) that for a given jump in £ or F| the
meridional circulation will be the stronger, the weaker the stability
of the vortex.

In order to determine the shape and orientation of: the elliptical
streamlines, we notice that 3 G,/dp vanishes along the line

p—pto _Bo  (BolaR)
(39) R—R, A,  (@olap)y’

1. e. along the isentropic line ¢ = o, through the center. This means
that the isentropic line through the center will intersect the streamlines
in points where the streamlines run parallel to the axis of the vortex
(Fig. 4). The lines 6 = ¢, and R = R, are therefore conjugate diameters
in each elliptical streamline. The shape of the ellipses is known if we
know the ratio between the lengths of these diameters. Instead of the

2
1 0=0,

R=R,

Fig. 4. The conjugate diameters R = Ry and 6 = q;.
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true lengths, we may as well use increments in R or p. Denoting by
1 the point of intersection between one elliptical streamline and the
line R = R,, and by 2 the point of intersection between the streamline
and the isentropic line ¢ = ¢, (Fig. 4), we find

_ S B (G B\ = yf[dn) [(42) (L2

GV @2~ VGk) (75 (7))
Here (dp/d R)s and (dp/d R). denote the slopes in the Rp-plane of the
lines ¢ = const. and the lines ¢ = const., respectively. From this

formula, the streamlines may be constructed.
Similarly, we find that 3 G,/d R vanishes along the line

P1 _po
Ry, — R,

p—po _Co  (3/3R),

R—R, B,  (cfapy

This shows that the line ¢ = ¢, through the center intersects the
elliptical streamlines in points where the streamlines touch the isobars
(Fig. 5). The lines ¢ = ¢, and p = p, are therefore conjugate diameters
in each elliptical streamline. Denoting by 3 the point of intersection
between a streamline and the line ¢=¢,, and by 4 the point of
intersection between the same streamline and the isobar p = p, (Fig. 5),

we find
o] G (B Bu)]_{(R) [14F) _(4R)]|
Ry — R, _60—[6‘0(30 CO):I - (a’p c (dp)o (a’p ¢ .

This formula determines the shape of the streamlines, in the same

way as does eq. (40).
4
P=P

3
Cac

o

Fig. 5. The conjugate diameters ¢ = ¢y and p = po.
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Fig. 6. Conjugate diameters of an elliptical streamline in a barotropic vortex.

As an illustration we consider the case of a barotropic vortex
(B=0, 62 = AC). The isentropic lines will then coincide with the
isobars, and from eq. (10) we see that the lines ¢ = constant will
coincide with the lines R = constant (Fig. 6). The points 1 and 2 in
Fig. 4 will coincide with the points 3 and 4 in Fig. 5, respectively.
Eqgs. (40) and (42) become identical and assume the form

P1—Po

R,— R, A,

We introduce the true lengths 2 7, and 2 L, of the conjugate dia-
meters K = R, and p = p,, and find

(43)

RQ*RO

sin @,

(44) leilpl_/%') L, =

where @, is the angle between the isobar direction and the axis. Using
egs. (31), (32), and (44), we may write (43) in the form
L, Y,

(45) . v
It follows from this formula that if the gravitational stability (vg) is weak
compared to the inertial stability (»;), then the streamlines are long
and narrow ellipses with their major axis nearly parallel to the axis
of the vortex (Fig. 7 a). On the other hand, if the inertial stability is
weak compared to the gravitational stability, then the streamlines will
be long. and narrow ellipses with their major axis nearly parallel to
the isobars (Fig. 7 b). In the atmosphere, the ratio »;/v, is normally
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P=Po,
= d=ac,
R_Ra: °
C-‘=C°
= q
P" PO)
o=
|
R=R,,
C—Co
a P=f
R=R, Jg=d,
c=c,
c
Fig. 7. Shape and orientation of elliptical streamline.
a. Barotropic vortex with strong inertial stability.
b. Barotropic vortex with strong gravitational stability.
c. Extremely baroclinic vortex.

of the order 1/100. Thus, if part of the atmosphere is regarded
as a barotropic vortex, the streamlines in the vicinity of a jump in £
or F would be of the latter type, shown in Fig. 7 b.

As a third example we consider the case of strong baroclinity,
where 0 is small because the lines ¢ = constant form a small angle
with the lines ¢ = constant (Fig. 7 c). More presicely, we will assume that

a

46) 5 (AL
&=

v A
CBES

Then it follows from egs. (40) and (42) that the streamlines are long
and narrow ellipses with their major axes in a direction close to the
directions of the lines ¢ == constant and ¢ = constant (Fig. 7 c).

In all the examples considered we have seen that meridional
motion takes place mainly in the direction of weakest stability, a result
the correctness of which will be felt intuitively.
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P

Fig. 8. Meridional streamlines in the vicinity of a point-source of heat.

7. Meridional circulation in the vicinity of a point-source of heat.

The meridional circulation produced by heat sources alone is
obtained from eq. (37) by setting 7~ = 0. Integrating by parts, we obtain
the solution in the form

oG
(47) v (R, 0) = —JJ;]?OE(RO,pO)dROde
y
since, by definition
(48) G=0 onS.

Hence we see that — 3 G/8 R, represents the solution in the case of
a single point-source of heat of unit strength?, located at (R,, p,). The
principal part of — 3G/3 R, in the singular point (R, p,) is — 3 G,/3 R,
According to (38), we have

o) 3G 1 _ Co (R — R,) — By(p — po)
TR, 276, CoR— R —2By(R—R)(p —po) + Alp—po)*

This is therefore the stream function in the vicinity of a point-source
of heat of unit strength.

The streamlines (— 3 G,/8 R, = constant) are conformal ellipses
of the same shape and orientation as those considered in section 6;
they may therefore be constructed by means of egs. (40) or (42).
However, the streamlines are in the present case not concentric, but
are displaced so that they all run through the point-source, whereas

! In the meaning “ E dR dp = 1. The word “point-source” refers to the meridional
4

plane. In space, the heat source considered is located along a circle around the axis.
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P=Po

. Fig. 9. Meridional streamlines in the vicinity of a point-source of heat.
a. Barotropic vortex with strong inertial stability.
b. Barotropic vortex with strong gravitational stability.
c. Extremely baroclinic vortex.

their centers are located on the isobar p = p, running through the
point-source (Fig. 8). It was shown in section 6 that the isobar and
the line ¢ = constant through the center of an elliptic streamline are
conjugate diameters. Hence it follows that all streamlines will touch
the line ¢ = ¢, through the point source. The field is a distorted field
of a dipole.

The sense of the circulation is such that the motion is directed
toward lower pressure (§ negative) through a heat source, and toward
higher pressure (p positive) through a cold source. Again we see, as
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Fig. ro. Streamlines of meridional motion produced by a heat source near a horizontal

boundary in a strongly baroclinic vortex.

in the previous section, that for a given heat source, the meridional
motion will be the stronger, the weaker the stability of the vortex
(expressed by 9).

In the three special cases considered in section 6, we obtain
streamline patterns as shown in Fig. 9. Fig. 9 a shows the streamlines
in the vicinity of a point-source of heat in a barotropic vortex with
weak gravitational stability compared to the inertial stability. Fig.gb
shows the case of a barotropic vortex with weak inertial stability
compared to the gravitational stability. This case corresponds to normal
atmospheric conditions in regions where the baroclinity is weak. Fig. g ¢
shows the case of strong baroclinity. This again illustrates that the
motion takes place mainly in the direction where the resistance of the
stabilizing forces is weakest, as was mentioned in section 6.

As allready stressed, the streamline patterns discussed apply to
the close vicinity of the point-source only. As we go further away
from the point-source, the streamlines will change their form so as to
adjust themselves to the shape of the boundary. Thus, if the point-
source of heat is situated near a horizontal boundary in a vortex with
strong baroclinity, one should expect a streamline pattern as shown
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in Fig. 1o. This picture may be regarded as an illustration of the
streamline pattern in a plane normal to a frontal surface, the “point-
source” of heat being represented by the released heat of condensation in
the frontal cloud. One should therefore expect the frontal surface to slope
roughly along the isentropic surfaces, in agreement with observation.

8. Meridional circulation in the vicinity of a point-source
of angular momentum.

The meridional motion produced by sources of angular momentum
alone is arrived at by putting £ = 0 in the solution (37). Integrating
by parts, we obtain on account of (48),

oG
(50) 0@, p) = — ([P R Rodpe
Po
be

In the case of a single point-source of angular momentum of unit
strength!, situated at the point R, p,, the solution is v = — 3 G/3 p,.
In the vicinity of the point-source, this function may be approximated
by its principal part, which is, according to (38),

~_aGlz 1 — By (R—Ry) + Ay (p — po)
3py 278y Co(R — Ry)*—2By(R— Ry (p— po) + Ao (p — po)*

The streamlines (— @ G.,/3 p, = constant) are conformal ellipses of the
same shape and orientation as in the cases considered in sections 6
and 7. All streamlines will run through the point-source of angular
momentum, and will have their centers situated on the line R = R,
through the point-source (Fig. r1). Since the lines R = constant and
o = constant represent the directions of a pair of conjugate diameters
in each elliptical streamline (section 6), it follows that all streamlines
will in the point-source touch the isentropic line o = o,.

The sense of the circulation along these streamlines is seen to
be such that the motion through a source of angular momentum is
directed away from the axis of the vortex, and the motion through
a sink of angular momentum is directed toward the axis of the vortex.
Again we see that the meridional circulation will be the stronger, the

! In the meaning JjF{{de = 1.
Y
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R=R,

Fig. r1. Meridional streamlines in the vicinity of a point-source of angular momentum.

E \i P=Po,
o=0,

R=R,,

b

P ="Po,
=0, %

o R=R,

a Cc

1]

Fig. 12. Meridional streamlines in a vicinity of a point-source of angular momentum.
a. Barotropic vortex with strong inertial stability.
b. Barotropic vortex with strong gravitational stability.
c. Extremely baroclinic vortex.
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weaker the stability or the vortex, the source or angular momentum
being the same. '

The meridional circulation in the vicinity of a point-source of
angular momentum in a barotropic vortex with weak gravitational
stability compared to the inertial stability is shown in Fig. 12 a. Fig.
12 b shows the case of a barotropic vortex with weak inertial stability
compared to the gravitational stability, and Fig. 12 ¢ shows the case
of a vortex with strong baroclinity.

9. Meridional circulations driven by friction at the boundary.

The field around a point-source of angular momentum, considered
in the preceding section, is invalid near the boundary, where the stream-
lines must fit in with the boundary condition. It is possible, however,
to investigate the field around a source of angular momentum at the
boundary. This case is especially important for applications to the
atmosphere, because the strongest frictional forces are found in the
layer near the surface of the earth.

In Fig. 13, the line S.S is part of the boundary, and P is a point
close to the boundary. We assume that along the line R = constant
through P, F = 0 above P, whereas [/ = F| = constant below FZ;
in all other points, /~= 0. There is then a jump in /, or a point-
source in 3 //3p at the point P. According to (37), the corresponding
solution is

w=KG(R,p; Ry, po

where K is a constant, R, and p, are the coordinates of the point /.
Disregarding the boundary, the field in the vicinity of /2 may be
approximated by

y = KG, (R, p; Ry, po)-

However, this field violates the boundary condition (36). We may
fulfil the boundary condition by adding the field of a similar point-
source of opposite sign, situated at the point /7’ outside the boundary

S P
/|
X p' S

Fig. 13. Method of image.
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(method of image). When the points 2 and P’ are infinitely close
together, and the coordinates of the point 2’ are Ry — d Ry, p, — d p,,
the resulting field is

2 G,
°3 R,

oG
dpy—2].
Tt 3?0)
Inserting here the expression (38) for G,, we obtain

. Cy— BydpJd R,
) vk P By — A, dpJd R,
S VT M IR — R —2B,(R—Ro) (p — po) + Ay (p — 77

(52) wZK(a’R

(R—R,)

where K, is another constant. The streamline 9 = 0 is the straight line

Co— B, d.ﬁo/d R,

(54) P B T adpd R, )

‘The boundary condition (36) is fulfilled when this rectilinear stream-
line coincides with the boundary. If the equation of the tangent of
the boundary is

(55) p—po = R —R,),
then we must choose dp,/d R, such that

Co— Boydpy/d Ry,

(56) By—AydpJd R, b

Eq. (53) then becomes
B p—po — O (R— R,
57 v KRy — 2By (R — Ry) (p —po) + Ay (p —poP*

This is the solution in the vicinity of a point-source of angular momentum
at the boundary. The streamlines y = constant are ellipses of the same
shape and orientation as in the cases previously considered. All stream-
lines run through the point-source, where they touch the boundary
(Fig. 14). It is easy to see how this picture is modified in the three
special cases considered in the preceding sections.

In the atmosphere, surface friction will represent a source or
angular momentum in zones of easterly wind at the surface of the
earth, and a sink of angular momentum in zones of surface westerlies.
The effect of surface friction within the zone of strong surface
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Ry
F S

Fig. 14. Meridional streamlines in the vicinity of a point-source of angular momentum
at the boundary.

westerlies in middle latitudes may be represented by a number of
point-sinks of angular momentum. Thus we see that the meridional
circulation set up by surface friction in the zone of westerlies in the
case of strong baroclinity must be qualitatively as shown in Fig. 15.
This picture fits in well with the high frequency of cloudiness and
precipitation observed just north of the zone of surface westerlies.
However, to this meridional circulation must be added the circulations
caused by heat sources and by friction above the surface layer.

POLE

ZONE OF
SURFACE
WESTERLIES

v
7

Fig. 15. Meridional circulation in the atmosphere, produced by surface friction in the

baroclinic zone of surface westerlies.
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10. Energy considerations.

We have assumed the meridional currents to be very slow compared
to the vortex motion, so that the direct effect of the meridional circu-
lations on the field of motion is slight. We find this assumption
justified in the case of the atmosphere, where the organized, non-
geostrophic meridional circulation is so weak that it is barely detectible
from the wind data. The importance of such weak meridional currents,
however, does not lie in their direct effect on the wind field, but on
their ability to change profoundly the structure of the vortex by
transporting the fields of the quasi-conservative properties ¢ and o.
Some insight into this mechanism may be gained by examining the
changes of enthalpy and kinetic energy within the vortex.

We shall assume that heat sources and friction are operating
simultaneously. It follows from the linearity of our problem that the
resulting circulation is then obtained simply by adding the motions
caused by each separate effect. ~

Denoting by % enthalpy per unit mass, and by dm the mass
element, the total enthalpy of the system is

(58) H = jh dm,

where the integral is taken over the entire system. Diﬂ'érentiating
with respect to time, and applying a well-known equation of thermo-
dynamics, viz.

Dh_ Do Dp

(59) @~ Tarteu
. . D , :
we obtain, since 77 dm = 0, and since there is no mass transport
across the boundary curve S,
dH Do
6 —_— — S dm.
(60) 77 JTdta’m-l—J.apdm

Here, the first term on the right represents the total heat per unit
time given to the system from external sources, plus the frictional
dissipation within the system. The second term on the right represents
the increase of enthalpy caused by the meridional currents. On account
of eq. (25), this term may be written
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Choosing here as mass elements the ring-shaped elements considered
in section 3, we may write

(61) dm=2n£a’de

z

in agreement with (21). Thus we obtain, on integrating by parts, and
utilizing egs. (7) and (28),

J‘dﬁa’m= —zn”ozz—gdfedp=zn”§—;wdzedp

(62
| =—2n —1——2 dRdp=2n||—BywydRdp= |Bydm
Raaﬂ/}' o Y Y .

The rate of increase of enthalpy is therefore

dH Do

The kinetic energy of the vortex motion is ¢*/2R? per unit mass, or
gy P

62
(64) K—J.mdm

for the entire system. In virtue of (1), we have

D ¢ 1 D¢ ¢ - Dc ¢
6— — — —_—
(65) R=0 %

dt 2R 2R® dtf R® R,

so that the rate of change of the total kinetic energy is

. dK D¢ ¢
66 — = dm— | =— )
(66) r J-wdtdm J.Rngm
In this equation, the first term on the right represents the work per
unit time done by the (frictional) forces that change the angular
momentum; and the second term represents the effect of the meridional
motion. Using egs. (25), (61), and (28), the second term on the right

"may be written
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o

c? - . > dy _ [' 1 a¢°
—JﬁRd1n— QnJ‘JVRK 3 dRdp=2n J-Rg dpwdR.d/b
(67)

z—sz-Jngdep=—JBq!dm.

The rate of increase of kinetic energy is therefore

dK Dc
(68) W—J.w?i—t-dm——J‘dem.

Inspection of (63) and (68) shows that the term [ By dm represents
a transformation of enthalpy into kinetic energy or vice versa. If
fBywdm<0, enthalpy is transformed into kinetic energy, and we
have what is usually called a “direct” circulation. If [Bydm>0,
kinetic energy is transformed into enthalpy, and the circulation is
“indirect”.

The change of kinetic energy caused by heat sources is entirely
due to the second term on the right of (68). The heat sources will
therefore give an increase, or a decrease in kinetic energy, according
as the meridional circulation set up by the heat sources is a direct
or an indirect one.

Friction, on the other hand, will act in two different ways to
change the kinetic energy. In the first place, the work done by the
frictional force will give a change in kinetic energy, expressed by the
first term on the right in (68). In the second place, friction will set
up meridional circulations which lead to a transformation of enthalpy
into kinetic energy or vice verca. This effect corresponds to the last
term on the right of (68). These two effects may counteract or cooperate,
depending on whether the frictionally driven circulation is direct or
indirect. The total effect of friction on the kinetic energy thus depends
very much on the accompanying meridional circulation.

It is possible to express the “energy transformation” — | By dm
directly through £ and /. For this purpose we introduce a function
VY (R, p), defined by

2 ( a%W 2w\ a(. 3% 3% R
(69) L(T)_ETQ(AE'FBE)TC{—;(B%—FCW)— ZB,
(70) Y=0 onsS.

© Det Norske Videnskaps-Akademi i Oslo * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1951ApNr....5...19E

Nr: 5. CCI0ED

Q!
(=4
=

£

(o]

No. 2. IQ5I. THE MERIDIONAL CIRCULATION IN A CIRCULAR VORTEX 47

It will be seen that ¥ is uniquely determined when the structure of
the vortex is known. Thus ¥ does not depend on the heat sources
(£) and the frictional forces (/7) in operation.

Since ¥ has the dimension of [y >< time], we may define a
meridional displacement field (A R, A p), with the lines ¥ = constant
as streamlines, by

oY

_ _ & __ &Y
(71) bR="% %, PP=TRIR

Comparison with eq. (25) shows that this displacement field will satisfy
the equation of continuity. It follows from what was said in section 6
that the lines ¥ = constant are closed curves, encircling regions of
strong baroclinity, and that the displacement field (71) circulates in a

positive sense around the solenoids in the meridional plane.
From (62) and (69),

—J-Bl,ua’m=—23JJ§-dede=—ZnJAJ.L(?lj)ldedp.

Using Green’s theorem we have, since L (%) is selt-adjoint,
L wdRdp=[[Lp)PdRdp.
Utilizing further egs. (29), (61), (70), and (71), we finally obtain

—J‘Bz/)dm-————anJ‘L(w)Tdep

(L P s v, o
(72) = an(aR+ap)qdep_2nH(EaR+Fap)dzedp

=ZnJ‘J(—EA/J—i—FAR)ga’de=J(—EA;&—}-FAR)dm.

Thus it is not necessary first to determine vy in order to calculate the
energy transformation. Having determined ¥, it is an easy matter to
calculate from (72) the contribution to the energy transformation of
any sources of heat or angular momentum. In particular, we can
decide immediately whether a certain point source of heat or angular
momentum will set up a direct or an indirect circulation. In the case

-of a baroclinic vortex with B> 0 we thus infer, since the displacement
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field (A R, A p) circulates around the solenoids in a positive sense,
that heat sources in the outer, warmer part of the vortex, and heat
sinks in the inner, colder part will give direct circulations. Likewise,
sources of angular momentum in the lower part of the vortex, where
the vortex motion is slow, and sinks of angular momentum in the
upper part, where the vortex motion is fast, will give direct meridional
circulations. Thus sinks ot angular momentum in the lower part of the
vortex will be more effective in reducing the kinetic energy of the
vortex than will be sinks of angular momentum in the upper part.

11, Change in the structure of the vortex,
The stationary vortex.

Eliminating 9®/3¢ between egs. (11) and (26) and between (12)
and (27), we find

00 _ 40w _ pdw
1 3¢ . p¥w 3y
(74) R BT Sy

Having determined v, we may use these equations to calculate the
rate of change of ¢ and c.

Hence it follows that for a stationary state, where ¢ and ¢ do
not change with time, we must have

_ 42y, gl
(75) E—A3R+Bap

oy oy
6 = B—Lt b
(76) F BSR+C8p

Eliminating v between these equations, we obtain

) 8 BE—AF 3 CE—BF_
mwe 2R AC—B® '"ap AC—B*

Furthermore, the stationary meridional circulation must fulfil the
boundary condition (36), which may be written
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oy
oR dp

— 2 (a’R)s on .S,
op

where the right hand side denotes the slope of the boundary curve
in the Rp-plane.

Eliminating /@ R and 9w/dp between this equation and (75)
and (76), we find

on .S.

-8 CE—BF~GQ>
S

BE— AF \dR

The conditions (77) and (78) must be satisfied by the functions
A, B, C, E, and F in any stationary state. Jf we have free disposal
of the sources of heat and angular momentum, then any meridional
circulation in any stable vortex may clearly be made stationary by
assigning these sources so that (75) and (76), and hence (77) and (78)
are fulfilled. However, in actual vortices such as the atmosphere, the
radiative and turbulent heat flux, and the turbulent frictional stress
depends on the fields of motion and temperature within the vortex.
Thus £ and F may be considered as certain (poorely known) functions
of 6 and ¢ and their spatial derivatives. Egs. (77) and (78) will then
represent relationships between the fields of ¢ and-¢. The existence
of stationary states depends on whether there are fields of ¢ and ¢
that satisfy egs. (77) and (78), as well as (10), and also on whether
these fields correspond to stable vortices.

In a vortex which is not in a stationary state, the fields of o
and ¢, and hence the sources of heat and angular momentum and the
meridional circulation, must continually change with time. Very little
can be said about the characteristics of such changes. If a stationary
state exists, one would perhaps expect that the vortex would approach
this stationary state asymptotically. If there are no stationary states,
then the changes must go on for ever.
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12. Application to the atmosphere.

Axially symmetric meridional circulations, of the type discussed
above, play a dominant role in the “old-fashioned” theories of the
general circulation of the atmosphere. More recent ideas ‘of the general
circulation, on the other hand, tend to stress the importance of such
motions which are asymmetric with respect to the earth’s axis, e. g.
wave disturbances, in producing the transfer of angular momentum
necessary to maintain the wind currents, and also in maintaining their
kinetic energy. The question of the relative importance of meridional
circulations and asymmetric motions is far from being settled; and the
following remarks on the character of possible meridional circulations
in the atmosphere and their possible role in maintaining the wind
fields are therefore presumably not yet entirely without interest.

In an attempt to apply the theory of meridional circulations to
atmospheric- motion, we are faced with the difficulty that the atmosphere
is not a symmetric vortex around the earth’s axis, since the fields ot
motion and state vary from one meridional plane to another, whereas
the theory has been developed for a strictly symmetric vortex. One
way to overcome this difficulty would be to apply the theory of
meridional circulations to the symmetric vortex formed by averaging
over all longitudes. Then all asymmetric motions would enter into
the theory as eddy motion, causing heat transfer and frictional forces
of a quite complicated nature. The corresponding eddy transport of
angular momentum is identical with the mechanism for transport
of angular momentum suggested by Jeffreys (1926).

A somewhat different method seems plausible if, as is often
observed, the asymmetric motion consists in smooth long waves in
the westerlies around the globe, such that the state and the speed of
the particles are fairly constant along the streamlines of the relative
motion. Then it seems reasonable to regard the meridional circulation
as being superimposed upon the wave motion, i. e. to assume that
the meridional circulation will take place as if the wave motion were
absent. To obtain the meridional circulation in pure form, we must
therefore straighten out the waves by displacing the air poleward in
the wave throughs and equatorward in the wave crests, thus forming
a fictitious, approximately symmetric vortex. The fields of state and
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zonal motion in any meridional cross-section of this fictitious vortex
will, in a first approximation, be represented by the fields of state
and zonal motion in one typical meridional cross-section through the
atmosphere. Our fictitious symmetric vortex will therefore have all
the typical features of meridional cross-section through the atmosphere,
whereas these typical features will be smoothed out if a symmetric
vortex is formed by averaging over all longitudes.

As an example, a cross-section taken from a paper by Palmén
and Nagler (1948) has been chosen. This cross-section represents a

-mean of several cross-sections through North America for 0300 GCT,

30 November 1946, but the averaging is done in such a way that
the typical features are not smoothed out. The cross-section is shown
in Fig. 16. The isentropic lines (dashed) and the lines of constant
zonal wind speed (dotted) have been copied from the paper by Palmén
and Nagler. The solid lines represent the lines of constant absolute
angular momentum (¢) in the corresponding fictitious, symmetric vortex.
These lines have been constructed by means of the formula

(79) a£=Qacosg(p+ucos<p,

where a means radius of the earth, £ angular velocity ot the earth’s
rotation, # relative zonal wind speed, and g latitude. Lines are drawn for
c/a = a multiple of 10 m sec™'. The coordinates of the diagram are
latitude and pressure. The scale is such that vertical lengths are en-
larged about 160 times compared to horizontal lengths. Lines parallel
to the earth’s axis, i. e. the lines R = constant, are therefore approxi-
mately vertical lines in the diagram.

North of 50° latitude, the lines ¢ = constant are nearly coinciding
with the vertical lines R = constant, and the isentropic lines are
nearly coinciding with the isobars. This means that the vortex in this
region is almost barotropic. South of 50° latitude, on the other hand,
the baroclinity is conspicuous, especially in the zone between 40° and
47°. Instability with respect to axially symmetric oscillations is found
only in a comparatively small region (hatched), just south of the west
wind maximum, where the slope of the isentropic lines is seen to be
steeper than the slope of the lines ¢ = constant. Everywhere else in
the cross-section, the slope of the lines ¢ = constant is seen to be

© Det Norske Videnskaps-Akademi i Oslo * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1951ApNr....5...19E

A.N. Vol. V.

ARNT ELIASSEN

52

::Souoo(‘\(lomq—mwe-
LT
J

‘Sjlun SuWles 9y} UT ‘9dejIns S,yjIed 9y} Jo wnjudwoul tgndue
Y} SIJEI[PUI UONIIS-SSOI) Y} MO[3q 3JedS Y], |93 W (] JO sidnnw ® = pf» Jo} uMeEIp 2Iv SAul Isay] *(6L) ‘bs jo suesw
£q pe3on1su0d UIIQ SAeY (PI[OS) wnjuswow Iensue JuElsuod jo saull YL *(g¥61) 1o[SeN pue upweg wolp pardod ussq IaBy
(paysep) @injeradway [eruajod juelsuod jo saul oY) pue ‘(pajjop) pasds pumm dydoljsosd [EuOZ JUBISUOD JO SIUI Y] EBIILDWY
Y}I0N WOl SUONEBAIdSqo uo paseq ‘961 IaquaaoN of ‘199 OgQ 3T 2Ioydsoune ay3 ySnoiyy uondIs-sSOId [EUCIPLID)Y ‘91 “51y

08¢  09¢ O¥E 0T¢ ©00f 092 092 O¥Z 0zz 00z OB 09 Op ozt OOl OB 09

1) T T T T T T .

OOm: OO.V Oom 00@ ZOO%OO—\
dosa \ | &\ s\ W0z \ W\ :

F | = A\ — \ H \ o\_uoom
EEEIREEI RS an S T ACa

SR RS R N feze
WM/WMJ%/ /!f U\%W | | . r, WMWMW HW%WWWM%N

seip SribaRs RRR e
i W SEEREN'S Mm: 2

- —\0F\ = rosi— 99 7
1= «.NT e m
¢ | oes |loos o8z josz pve /o

—
\

)

\ I
A
o\"
[e}

)

N

X

/
7
/|
24
o~
/
4/
| /]
/A
e
-
e
1
I |
‘ 1
i
5\.\&\4¢_
|
\
N
\
\
tm— oo Ri
b

05

7,
//
Ve
—
_,_/L’
)T_.—
T
(|

]

i

{
\E
\XV\
\\Q
Ein

\

e

TST
il
| {l ;%/'
L]

LY
T
|
I
S
LRRARY
it .
T
T

(‘_\l_
%

|
[ i
ol
0]
X
N
LF

a5~
o\mN\

22 002 |08l | o9t |\ obl \ogt

L
0
a
P
Q
o

D x0
p oY
i
-
s

=
x
o
P

© Det Norske Videnskaps-Akademi i Oslo * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1951ApNr....5...19E

No. 2. I951. THE MERIDIONAL CIRCULATION IN A CIRCULAR VORTEX 53

steeper than the slope of the isentropic lines, corresponding to stability
with respect to axially symmetric oscillations. This is in agreement
with the findings of Palmén and Nagler (1948). Taking into account
the difficulties in connection with the application of the theory of the
circular vortex to the atmosphere, and possible errors of observation,
one should not pay too much attention to the fact that the limit of
stability seems to be exceeded within the hatched region. All that can
be safely said about this region is that the state is close to the
transitional state between stability and instability.

It has been shown in sections 7 and 8 that the meridional stream-
lines in the vicinity of a point-source of heat or angular momentum
are ellipses, the shape and orientation of which depend only on the
local structure of the vortex. The ellipses in Fig. 16 are such stream-
lines constructed by means of eq. (40) in five different points of the
cross-section. To obtain the true shape of these ellipses in the meridional
plane, the vertical scale of the diagram must be reduced about 160 times.
The vertical diameter of the ellipses is therefore in reality very small
compared to their horizontal extent, and the major axis will in all
cases be orientated approximately along the isentropic lines. The major
axis is thus approximately horizontal in nearly barotropic regions, and
is sloping along the isentropic lines in baroclinic regions. The ratio
of the minor axis to the major axis, which is everywhere a small
quantity, will decrease with increasing baroclinity, and tend toward
zero as the vortex approaches the transitional state between stability
and instability (i. e. as d —> 0). Thus there is a tendency for the stream-
lines to extend along the isentropic lines, and this tendency is par-
ticularly pronounced in regions of strong baroclinity. Obviously this
tendency will as a rule be preserved also if we add up the fields
produced by several point sources of heat and angular momentum.
Hence we conclude that even in the case of an arbitrary distribution
of sources of heat and angular momentum, there will be a tendency
for the meridional streamlines to extend mainly in the direction of
the isentropic lines; and this tendency will be particularly pronounced
in regions of strong baroclinity.

Since the sources of angular momentum in the free atmosphere
presumably are comparatively weak, one should expect that meridional
circulations would cause a weakening of the gradient of angular
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momentum in the meridional plane. In Fig. 16, a region of remarkably
weak gradient of angular momentum is found in middle latitudes,
south of the west wind maximum. It is not unreasonable to assume
that this weak gradient of angular momentum is caused by meridional
currents, which in this strongly baroclinic region must have a pronounced
tendency to follow the sloping isentropic lines, thus carrying angular
momentum from low levels in low latitudes into the upper troposphere
in middle latitudes. It seems therefore that the occurance of very high
westerly wind velocities in the upper troposphere of the middle latitudes
would follow as a necessary result of such meridional circulations.

The weakening of the gradient of angular momentum in a region
where meridional circulations are going on, must be accompanied by
a strengthening of the gradient of angular momentum in the adjacent
regions. Such a strengthening shows up very distinctly in the cross-
section north of the west wind maximum. Now, since the inertial
stability is proportional to the gradient of the angular momentum,
meridional circulations will tend to reduce the inertial stability in the
region where these circulations occur, and to increase the inertial
stability in adjacent regions. It was pointed out in sections 6, 7, and 8
that the speed of the meridional circulations will increase with decreasing
stability. Therefore, a meridional circulation in a certain region of the
meridional plane will support itself, by reducing the stability within
this region, and suppress meridional circulations in the adjacent regions
by increasing the stability in these regions.

This mechanism will be recognized as being analogous to the
effect of turbulence on lapse rate. Turbulence in the surface layer will
support itself by increasing the lapse rate within this layer, but will
cause a reduction of the lapse rate and thus suppress turbulence in
the adjacent layer above. This leads to the development of the well
known turbulence inversion as a sharp upper boundary of the mixed
layer. It is not unreasonable to assume that the analogous mechanism
for meridional circulations may lead to the development of an abrupt
northern boundary of the meridional circulations, thus explaining the
remarkable sharpness of the west wind maximum.! North of the west

! This analogy was introduced by the Chicago school, however, in the opposite sense,

by comparing the mixed surface layer with the polar cap north of the west wind
maximum. (Staff members, Department of Meteorology, University of Chicago, 1947).
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Fig. 17. Schematic meridional cross-section through the atmosphere, showing hypotetical

meridional circulations. Solid lines are meridional streamlines. Thin dashed lines are

lines of constant angular momentum. Heavy dashed line means tropopause. Arrows

indicate turbulent transfer of angular momentum. M4 (M—) indicate sources (sinks)
of angular momentum, and H+ (H-) sources (sinks) of heat.

wind maximum, meridional circulations are absent owing to the strong
(inertial) stability, and thus there is nothing that will destroy the strong
gradient of angular momentum, 1. e. the strong cyclonic shear of the
wind. South of the west wind maximum, the weaksstability will favor
meridional circulations, and these circulations will in turn maintain a weak
gradient of the angular momentum, 1. e. a strong anticyclonic shear
of the wind.

A proposed scheme of the meridional circulations south of the west
wind maximum is shown in Fig. 17. The dashed lines represent lines
of constant angular momentum, and the arrows indicate the frictional
(turbulent) flux of angular momentum, assumed to take place from strata
of higher angular momentum toward strata of lower angular momentum.
The corresponding sources and sinks of angular momentum are denoted
by M, and M_, respectively. The air is supposed to be heated in
lower levels near the equator; and another heat source, due to release
of latent heat, is assumed to be located just north of the surface
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westerlies in middle latitudes. These heat sources are denoted by H .
Sinks of heat (A_), due to excess radiation in warm, subsiding air,
are indicated in about 40°N. However, the indications of the locations
of these heat sources and sinks are based on very crude estimates,
and represent an extreme simplification.

From the preceding theory one should expect these sources and

- sinks of angular momentum and heat to give rise to a meridional
circulation with two main circulation cells, as indicated by the solid
lines in the diagram. The larger, thermally driven “trade wind cell”
extends from the earth’s surface in low latitudes to the upper west
wind maximum in middle latitudes. This circulation cell carries angular
momentum from the surface trades, which constitutes the main source
of angular momentum, into the upper westerlies in middle latitudes,
where supply of angular momentum is needed for the maintenance of
the wind field against frictional dissipation. The smaller indirect “frontal
cell” in the north receives angular momentum and energy from the
trade wind cell by means of friction. This cell loses angular momentum
to the ground in the zone of surface westerlies, which constitutes the
main sink of angular momentum. The meridional streamlines are running
mainly along the isentropic lines, in agreement with the requirement
of our analysis. According to V. Bjerknes (1937), this model is nothing
but the old scheme of Ferrel (1856) and James Thomson (1857) in
a slightly new version.

The model of meridional circulations, described above, seems to
account for the distribution of angular momentum, and hence for the
maintenance of the trades and the middle latitude westerlies. However,
it is not intended to claim that such meridional circulations is the only
mechanism of importance for the maintenance of these wind fields.
It is very probable that part of their kinetic energy originates from
such wave disturbances that are able to convert thermal energy into
kinetic energy.
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Appendix.
Let 7 denote a symmetric, two-dimensional tensor, whose components
(4B
"TlBc
are continuous functions of two independent variables, and let ¥ denote
the two-dimensional del-operator in these coordinates. The boundary

value problem for the stream function, egs.(29) and (36), may then
be written

(80) Ly)=vV-Vy)=9¢ in 7,
(81) . w=20 . on S,

where S is the closed boundary curve, and y the region of the
coordinate plane enclosed by S. Eq. (80) is supposed to be of the
elliptic type, such that

(82) =AC—B*>0.

In the region y, we choose a point with the position vector rg,
and a closed curve s enclosing the point r,. Green’s theorem for the
perifractic region y' between S and s gives

G- vy)dy —[wv-(-VG)dy
r! 7!
(83) =¢GN 7-VypdS—$yN-7-V GdS
S 8

—4$Gn-v-VydS+$ywn-t-7GdS.

Here N is a unit vector normal to S, pointing out of y', and n is a
unit vector normal to s, pointing toward y'. We define the Green
function G by the following conditions:

(84) L(G) =V (z-VG) =0 in y, except in ry,
(85) - G=0 on S,
(86) $n-t-VGds =1.

On account of (84), eq. (86) will hold for any curve s if it holds for

one particular curve s. Thus the limit of the integral of (86), when
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s contracts toward r,, must also be equal to unity. When 7 is continuous,
and 7, its value in ry, this limit may be written as

(87) lim $n-7,-VGds=1.

§=0 s

This equation, which may replace (86), shows the nature of the
singularity of the Green function in the point ry.
In virtue of (84), (85) and (81), eq. (83) becomes

(88) [Gpdy=—¢Gn-1-Vyds + éwn 1-VGds.
y! s s

If we let the curve s contract toward the point r,, the second
integral on the right tends toward y, (the value of v in ry) on account
of (87), and the first integral on the right tends toward zero (this is
seen if we let the curve s be a curve G = constant). Hence we obtain

(89) %:qu)d;},

which is identical with eq. (37).

It was stated in section 6 that the function G,, defined by (38),
constitutes the principal part of G near the singular point. We shall
show that G, actually fulfills eq. (87). Apart from an additive constant,
G, may be written

1
279,

In{(r—rg)-ry= ' (r— ro)]%,

(90) G, =

where subscripts “0” denote values in the point r,, and 7! is the
inverse tensor

B {C/(S?, — B/s

T ==

(91) — B/8*, 4/8°
From (go) we obtain

1 70" (r— )
_271(30 (r—rg) 1o 1 (r — rp)

(92) VG,

b

and consequently, for any curve s,
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1 (r—ry)-nds
{”.TO VGlds~2n50§(r—r0)-ro_l “(r—ry)

N N

27
1 (r—r,)do
(93) :27160J.(r—r0)-10“1'(r—r0)
0
2x
N do _,
27 ) Cycos® @ — 2 By cos fsin 6 + A, sin® ’
0

where 6 is the argument angle in a polar coordinate system centered
at ro. Thus G, fulfills eq. (87), and the assertion is proved.

List of symbols.

R distance from the axis, gz component parallel to the axis of
Z height above a plane normal to the the acceleration of gravity,

axis, 4, B, C, E, F, coefficient functions, defined
¢ time, on p. 27,
P gravity potential, S boundary curve in the merdional
b pressure, plane,
a specific volume, ¥y region enclosed by S,
T absolute temperature, G Green function,

Y entropy, vg  frequency of gravitational oscillations,

1 defined on p. 2z, Vi frequency of inertial oscillations,
cp specific heat at constant pressure, | &  enthalpy,
w absolute angular velocity, A enthalpy per unit mass,
¢ angular momentum per unit mass, | K kinetic energy of the vortex motion,
R,p. individual rate of change of R and p, | ¥  defined on p. 46,
D/d ¢ individual derivative, V R, \V p fictitious meridional displace-
W stream function of the meridional ments, p. 47,

motion, defined on p. 26, a radius of the earth,
(0] heat received by the fluid per unit | ¢ latitude,

mass and unit time, u relative zonal wind speed.
% frictional torque,
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