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Abstract 
By obtaining complete solutions, satisfying all the relevant simultaneous differential 

equations and boundary conditions, representing small disturbances of simple states of 
steady baroclinic large-scale atmospheric motion it is shown that these simple states of 
motion are almost invariably unstable. An arbitrary disturbance (corresponding to  some 
inhomogeneity of an actual system) may be regarded as analysed into “components” of 
a certain simple type, some of which grow exponentially with time. In all the cases ex- 
amined there exists one particular component which grows faster than any other. It is 
shown how, by a plocess analogous to “natural selection”, this component becomes 
dominant in that almost any disturbance tends eventually to a definite size, structure and 
growth-rate (and to a characteristic life-history after the disturbance has ceased to be 
“small”), which depends only on  the broad characteristics of the initial (unperturbed) 
system. The characteristic disturbances (forms of breakdown) of certain types of initial 
system (approximating to those observed in practice) are identified as the ideal forms of 
the observed cyclone waves and long waves of middle and high latitudes. The implica- 
tions regarding the ultimate limitations of weather forecasting are discussed. 

The present paper aims at developing from 
first principles a quantitative theory of the 
initial stages of development of wave-cyclones 
and long waves. For reasons of space and 
readability both the argument and the mathe- 
matics have been rather heavily compressed. 
A fuller and extended treatment of several of 
the points raised will be given in subsequent 
papers. 

I. The Equations of Motion 

Owing to the complexity (and non-linearity) 
of the simultaneous partial differential equa- 
tions governing atmospheric motion it is 
desirable to simplify these by the omission of 
all those terms whch do not make a major 
contribution to the particular t y  e and scale of 
possible by the fact that we know, from 
observation, roughly what the answers must 
look like. Its utility is justified by the fact that, 
having once obtained a crude model of the 

motion envisaged. This proce B ure is made 
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motion, we may then by successive a proxima- 

originally omitted. In the present instance we 
are concerned with relatively rapid develop- 
ment, by comparison with whch radiative 
processes (or rather their differential effects) 
are slow. For a first approximation therefore 
we consider the motion as adiabatic. Also we 
are concerned with the motion of dee layers 

effects of internal friction (“turbulence”) and 
skin friction. A rough calculation shows that 
the energy dissipated in the surface friction 
layer is usually much less than the energy 
sup ly to the growing disturbance and this is 
pro E ably, in most cases, the major source of 
energy loss. The present paper is concerned 
only with systems which are initially (and 
also after a small perturbation) convectively 
stable, i.e., with those systems which would 
appear to be least favourable with regard to 
instability. Hence we use a system of equa- 
tions appropriate to laminar frictionless adia- 

tion take into account any or all o P the terms 

and for a first approximation we neg Q ect the 
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batic motion of a rotating baroclinic fluid. 
Restriction to convective stability makes 
possible a further slight simplification in that 
in almost all1 such cases (except very close to 
the border-line) we may neglect vertical 
accelerations and use the hydrostatic equa- 
tion - the disturbances are “quasi-static”. 
Briefly, the explanation is that in such cases 
the energy associated with horizontal perturba- 
tions greatly exceeds that associated with 
vertical motion. 

The atmosphere is a compressible fluid and 
in estimating the significance of this fact it 
is convenient to consider separately the static 
effect, manifested by the decrease of density 
with height, and the dynamic effect, mani- 
fested by elastic forces in the equations of 
motion. The static effect has two consequences. 
In the first place, the static stability, a measure 
of the force tending to restore a displaced 
particle to its equilibrium position, is measured 
not by the vertical density gradient but by 
the ‘gradient of potential density (or by the 
difference between actual and adiabatic lapse- 
rate). As compared with incompressible flow 
this involves only the modification of a para- 
meter. In the second place, a given mass of 
air occupies, at higher levels, a greater height 
range. The result is that atmospheric flow 
can never be quite equivalent to incompressible 
flow but (as may be inferred from the detailed 
treatment) the difference is to be regarded as 
a distortion rather than any differcnce in kind. 
For systems whch are not too deep there is an 
equivalent incompressible system whose be- 
haviour closely parallels that of the atmospheric 
one. The nature of the “correction” for very 
deep systems is discussed below. The signi- 
ficance of the elastic forces depends on the 
type of solution in which we are interested. 
In the theory of atmospheric tides and the 
diurnal variation of pressure, where the wave- 
velocities are comparable with the speed of 
sound, these forces play an essential part. But 
in all waves associated with “wcather” the 
wave-velocities are, by observation, small 
compared with the speed of sound and this is 
true, as we shall see, of both the real and imagi- 
nary parts of the wave-velocities of the theore- 

1 The exreption is the case of strong anticvclonic 
horizontal shear approaching in magnitude the Coriolis 
parameter-see below. 

tical solutions. We are therefore justified in 
treating the motion, from the dynamic point 
of view, as incompressible. The net result is 
that we can construct an equivalent “incom- 
pressible flow,” problem and then use as our 
continuity equation:l 

3 
dz 

divHv + - V, = o 

For systems which are not too large we may 
use the ordinary Cartesian co-ordinates fixed 
in the earth in which we imagine a small 
spherical cap to be “flattened” on to the 
tangent plane so that gravity acts along parallel 
lines. This involves a certain amount of geo- 
metrical distortion (and consequently a distor- 
tion of our solutions). A more serious error 
results from the assumption of a constant 
Coriolis parameter and we may obtain a 
first approximation to this error by using the 
same co-ordinate system but regarding the 
Coriolis parameter as a function of y (the N-S 
co-ordinate). A more precise treatment of 
long waves requires the use of a polar (or 
equivalent) co-ordinate system and crude 
solutions, using numerical methods, have been 
obtained in ths  case. The broad resemblance 
of these solutions to those obtained by ana- 
lytical methods in the Cartesian system justi- 
fies the use of the latter as a first rough approxi- 
mation. 

If we define, for unsaturated air: 

I @ = - logp-log @ 
Y 

so that @ is proportional to the entropy, we 
have for adiabatic motion: 

d d l @ = o  (3)  

(1 
d z  

We shall d&ne the static stability as - @. To 

study the motion of saturated air in contact 
with cloud we have only to alter the effective 
value of the static stability (our norm is now 
the wet adiabatic). Usually the reduction is 

When not otherwise stated, the symbols employed 
are those normally used in theoretical meteorological 
literature. 
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verify that this is the case for the solutions in 
which we are interested. Then for a first 
approximation we may use in place of (I. 6) : 

very significant, the forces opposing vertical 
motion being much less inside than outside 
a cloud, a fact having, as we shall see, important 
consequences. Moreover we obtain a direct 
translation from atmospheric motion to in- 
compressible flow by the substitution: 

a @  4 az (! at Vx-KVy) = -g-, ax 

Alternatively, we may regard y as having, 
for saturated air, a value slowly varying from 
considerably less than 1.4 at high tem eratures 

batic value at low temperatures. For an in- 
compressible fluid y is effectively infinite. 

With the approximations mentioned above 
we have the dynamic equations (where K is 
the Coriolis parameter) : 

but asymptotically approachmg the f; ry adia- 

a @  2 (dVy+KVx =-g-- .  (7) 
az dt ) aY 

Equations (I. 7) together with (I. I) and (I. 3) 
form a complete set involving only the 
dependent variables V,, V,, V,, @ (note that 

the operator - involves V,, V,, V,: the a .  
at 

equations are non-linear). However in the 
elimination process we have lost a function 
of integration. If we differentiate the first 
two of equations (I. 5 )  with respect to y andx 
respectively and subtract we obtain, using (1.2) : 

These equations, together with equations 
(1. 3) ,  form a complete set. Further 
simDhfication is however ,,ossible. (For the 

Numerical substitution then shows that in 
the cases in which we are interested the effects 

1 
two of equations (I. 5): using equation (I. z> a@ a@ 

ax’  ay multipliers - - and to a sufficiently close and the last of equations (I. 5 ) :  

approximation : 

(9) 
where the first brackets are regarded as opera- 
tors. We shall see that the solutions with 
which we are concerned “oscillate” in the 

tion” is not sinusoidal) and if this ‘~osc~ation9’ 
is sufficiently rapid (if the disturbances are 

Elimination of @ from equations (I. 7) gives 

simply - of equation (I. 9) -the approxima- 

tions in the two cases are consistent. On re- 
arrangement of terms (1. 9) becomes: 

a 
az direction of x (it is immaterial that the “oscilla- 

a a not too deep) the effect of the operator - 
ax 

swamps that of the multiplier -. By numeri- 

divHv - (K + curlHv) + - curlHv + 
+ _ . - - - . _  

df a@ 
(avz av, av, dV,> = 0 (10) 

ax 
cal substitution in the find answers we can ax az ay az 
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To obtain a fourth equation symmetrical in 
V, and Vy we differentiate equations (I. 7) with 
respect to x and y respectively and add. Then 
on re-arrangement : 

where the suffi H in all cases indicates differ- 
entiation with res ect to x, y only. We shall 
use equations (I. 8, (I. 3), (I. 10) and (I. 11) as 
our fundamental set. When other dependent 
variables are required (e.g., ressure, which 
may appear in boundary con b: ’tions) they are 
easily computed in terms of our fundamental set. 

An important feature of this set of equations 
is that transformation to a co-ordinate system 
in uniform horizontal relative motion is 
almost as simple as in the Newtonian case. 
V, and V, transform as in the latter case by 
vectorial addition of the relative velocity, V, 
and @ being unchan ed. The only difference 

levels) whose gradient corresponds to the 
relative velocity regarded as a geostrophic 
wind. This is consistent with the assumption 
that the so-called “tendency equation” is 
not to be interpreted as an expression of accu- 
mulation of mass but rather that the terms 
associated with this process are usually neg- 
ligibly small compared with those associated 
with change of flow - as in classical (subsonic) 
aerodynamics. 

The approximations made could be more 
convincingly justified by a detailed analysis, but 
a rigorous proof is possible only ufler obtaining 
the complete solutions of the approximate 
equations, when we can check on the precise 
effect of the omitted terms. A simpler but ne- 
vertheless fairly convincing check is the “life- 
like” behaviour of the solutions, both qualita- 
tively and quantitatively. 

II. Disturbances of Steady Baroclinic Flow 

We shall consider first a state of steady baro- 
clinic flow in which the motion is uniform at 

is that we must ad B a pressure field (at all 

each level and for simplicity we shall suppose 
both the “thermal wind” and the static sta- 
bility constant, i.e., @ is a linear function of 
x, y, z. In view of the transformation theorem 
referred to above there is no loss of generality 
in supposing : 

v, = U(z )  : 
v, = v, = o :  
@ = A y + B z :  (1) 

So long as we ignore the variability of K the 
equations of motion are horizontally isotropic 
- the orientation of the y-axis is irrelevant. 
Equations (11. I) are consistent with steady 
motion if: 

by reason of (I. 6). The a proximation is good 

(or the pressure gradient abnormally large). 
Since we are interested in the behaviour of 
strongly baroclinic systems no serious errors 
are introduced. 

We now introduce a small perturbation 
and write : 

except when the therma P wind is very small 

v, = U f v , :  
v, = v y  : 
v, = v z  : 

@ = A y  + Bz + p l  : (3) 

where v,, vY, vP, 0: are infinitesimal functions 
of x, y, z, t .  Substituting in our fundamental 
set of equations we obtain the perturbation 
equations (which are of course linear) 

a 
az divHv + - v ,  = o 

d a 
dt aY 

KdivHv + -- curlHv +Ku - vz = o 

d .  -!! ax [KcurlHv- - dt divHv + 
+Ka-] ax = V& (gv), av, 

(4) 
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where : 

By using the identities 

a 3 
VB vy = - divHv + - curlHv : (6) aY ax 

we may eliminate successively cy, c u r b ,  
divHv from equations (11. 4). Finally we 
obtain a single partial differential equation 
involving v, as the only dependent variable: 

We cannot hope to solve this equation (tech- 
nically of the fifth order) in complete gener- 
ality but we may seek certain simple types 
of solution. Fortunately the sim lest solutions 

Since, apart from constants and differential 
operators (II. 7) involves only functions of z 

are those of greatest practica f importance. 

function U(z )  appearing in 

possesses solutions of the form: 

VI = ~ ( z ) . Y : Y ~ ~ ; ( ~ ~ + ~ Y + ~ ~ ) ;  (8) 

where A, y, 6 are constants and N is a function 
of z only. In fact we may replace the operators : 

and if at the same time we change our vertical 
co-ordinate by writing : 

a R ;  (10) 
UR+6 dX X=X(z)= ~ ;z=- 

we obtain on substitution the ordinary second 
order differential equation to determine N: 

d2N dN 
dX2 dX x ( X ~ - -  I )  -- + 2(1 -iuS) - + 

+ [hZ(I + u 2 ) X  + 2 iu] N = o ( 1 1 )  

where we have written: 

The parameter h 2 ,  which involves both the 
horizontal and verticaI entropy gradients, sums 
up (apart from matters of scale and boundary 
conditions) the characteristic properties of the 
flow. From (1.4) it is clear that hz  is sim ly 

flow. 
If we can solve (II. 1 1 )  with appropriate 

boundary conditions all the associated per- 
turbation functions are readily determined 
by means of equations (11.4). In fact a con- 
sistent set of solutions may be obtained in 
whch : 

the Richardson number of the unpertur f ed 

v, = L(z)  - Y :  

vy = M ( z )  - Y : 

ql = F ( z )  * Y :  

p = G(z)  - Y, (13) 

where the pressure perturbation p is determined 
by : 

d - _  _. I = - v Z - K v y - K a v r  (14)  eo ax dt 

or the corresponding equation for - GP . Here eo 
aY 

is quite uncritical and we may take eo = eo (2) 
as the mean distribution of density with 
height in the system with which we are con- 
cerned. 
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For solutions of the form (11. 8) and (11. 13) 
we obtain the relations : 

E A D Y  

With the substitution: 

equation (II. 11) becomes 

which is in some ways more convenient. 
We  will suppose for the moment that 1, p 

are real. If at the same time 6 is rcal the solu- 
tion (11. 8) will correspond to a system of 
stable waves. For the unstable waves we are 
seeking, 6 must have a non-vanishing imagin- 
ary part and we shall write: 

6 =9, - i i6 ,  (18) 

For such solutions (if any) X defined by (11.10) 
becomes a complex variable (with a constant 
ima inary part) and it is convenient to regard 

complex variable. Thus in general L, M,  N 
etc. as well as Y are complex numbers. This 
in no way affects the physical interpretation 
of vx,  v,,, vz etc., as the real parts (for example) 
of the expressions (11. 8) and (11. 1 3 ) .  All it 

R, f etermined by (11.17), as a function of this 

means is that the phase of the wave corres- 
ponding to cach clement (velocity-component, 
pressure etc.) as well as the amplitude varies 
with height. 

Numerical substitution shows that in normal, 
convectively stable conditions (we are con- 
cerned with mean values over considerable 
depths) we have: 

k 2  + I (19) 

W e  shall for the present confine our attention 
to ths, the most interesting case. It can be 
shown by energy considerations (see below) 
that in this case we should have: 

over the range for which the perturbations 
have significant amplitudes. Alternatively we 
may assume this result and show that our 
final solutions are consistent with this assump- 
tion. Then (11. 17) becomes approximately: 

h 2 ( 1  4. u') R = o (21) 
d2R 2 dR 
dX* X dX 
_ _ - _ _  

and with the substitutions: 

H 2  = k2 ( I  + 02); Q = H X ;  (22)  

we obtain: 

R = o  (23 1 d2R 2 dR 
dQ2 Q dQ 

_ _  

the general solution of which is: 

R = u,R, + a 2 R 2  
R, = eQ(1- Q) 

R, = e -Q ( I  + Q) : (24) 

where a,, 0, are arbitrary constants. 
Consider first a hypothetical (but physically 

possible) system in which motion takes place 
between two horizontal rigid plane boundaries 
which, without loss of generality, we may 

suppose to be at 2 = f - corresponding to 

X,, Q,, and X,, Q2 respectively. W e  shall 
suppose the fluid unbounded in any horizontal 

ZO 
2 



L O N G  WAVES A N D  CYCLONE WAVES 39 
direction. Then for the functions to be finite 

2 0  at infinity we must take 2, p real. At z = f - 

the normal velocity vs must vanish which 
will be the case if: 

2 

R = o ;  Q =  Q1, Qa (2s) 

Then we have: 

and if we write: 

(Qz-Qi) = 2 a :  

(Qz + QJ = - z i p ,  (27) 

we have : 

B z  = 2cc coth 2 a  - I - a 2 ~  

-= (a - tanh a) (coth a - cc) (28) 

as the condition to be satisfied if solutions are 
to exist. On substitution for Q1, Q2 in (11.27) 
we have : 

- 

H dU 
K 

2 a = - .  

H - 2 i $ 1 -  - K 

so that a is necessarily real. It follows from 
(11. 28) that /? is either purely real or purely 
imaginary. Only when /? is real, i.e. when 

lal<cc,= 1.1997[cc~=cothc~,,] (30) 

do unstable solutions exist. Then by (11.29): 

where U,, U2 are the unperturbed velocities 

at levels x = f - respectively. The second 

of these equations shows that the waves travel 
with the mean unperturbed current (we may 

2 0  

2 

Fig. I a. Phase Variations: Above p ,  p; Below vz, divHv; 
Fig. I b. Amplitude Variations: Left p .  q; Right u2, 

diVnV. 

call the level z = o the “steering level”). 
The first equation determines the growth- 
rate. It is easily shown that I,8I defined by 
(11.28) has a maximum for a particular value 
of a. Then: 

= 0.3098 

la1 = 0.8031 (3 2) 

For these values, with the additional condi- 
tion cr = 0, the growth-rate is a maximum. 
At the same time (11. 29) determines the 

wavelength - in terms of the parameters 

of the unperturbed system. The disturbances 
are easily seen to be, at each level, a series of 
(growing) ridges and troughs with their axes 
at right angles to the un erturbed thermal 

is very similar to that of the disturbances of 
more realistic s stems it is of interest to examine 
them in detail: This structure is most con- 
veniently described by graphs showing the 
variation with height of the phase and ampli- 
tude of the waves representing various salient 
features such as the pressure erturbation, 

vz, divHv are shown in Fig. I. The distribu- 

272 . 
A 

wind. Since the structure o P these disturbances 

vertical velocity, etc. The grap 1 s for p ,  9, 
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tion for vy may be inferred directly from the 
pressure field since it is easily shown that for 
these disturbances [and in fact for the disturb- 
ances of all systems satisfying (II. IS)] the 
winds are to a first approximation geo- 
strophic. Ageostrophic winds (including in 

E A D Y  

the present instance vz) are of order f 
, h‘ 

It will be observed that the pressure trough 
slopes upwards and backwards in the atmo- 
sphere while the warm tongue (entropy 
maximum) slopes upwards and forwards. 
At low levels the warm tongue is slightly 
ahead of the pressure trou h but at high levels 

upper pressure ridge. U ward motion (and 

middle levels wavelength ahead of the 
ressure trough. We may note that 

combined motion being upwards towards 
cold, downwards towards warm air. We may 
note also that at the same level vz and op are 

hase with rising warm and descending 
col in B air, corresponding to a decrease in poten- 
tial energy. In fact on integration over a whole 
wavelength we find that there is a positive 
correlation between v, and q? and a net de- 
crease in the potential energy of the system 
as a result of the disturbance. It is of course 
this release of potential energy which feeds 
the kinetic energy of the growing disturbance. 
Our analysis shows that such a process (similar 
to that conceived by Margules) is consistent 
with all the equations and constraints of motion 
and in fact that such processes must occur 
from time to time. 

It is easily verified by substituting typical 
values of the parameters that if zo is taken as 
the height of the tro opause the wavelength 

is of approximately the same size as observed 
long waves. For smaller values of the static 
stability (as in large cloud masses) and smaller 
vertical extents we obtain “dominant” wave- 
lengths of the order of magnitude of observ- 
ed extratropical wave-cyclones. Thus we are 
certainly concerned with disturbances of the 
right order of magnitude. Our systems are 
not yet however sufficiently realistic for posi- 
tive identification. As a first step towards 
realism we remove the artificial boundary 

the warm tongue is slight P y to the rear of the 

hence, potentially, rainfa P ) is a maximum at 

surface at midd P e levels vy and v, are in phase, the 

of the disturbance o P maximum growth-rate 

ZO at z = +- and consider a system in which 

the atmosphere extends upwards indefinitely 
but at some definite level the static stability 
increases abruptly. For mathematical simplicity 
we take the “thermal wind” to be the same in 
both the lower and u per “regimes”. This 
system is unsymmetricafso we shall put z = o 
at the earth‘s surface (rigid boundary) and 
z 5 zo at the boundary between the two 
regimes. Thus z = zo might correspond to 
an inversion or stabilisation of lapse-rate - 
were it not for the observed thermal wind 
change zo might be the height of the tropo- 

ause. Alternatively, the lower regime might 
ge a (baroclinic) cloud mass of low base 
(small effective static stability) surmounted by 
unsaturated air. In all these cases the Richardson 
number (h!)  in the lower “regime” is less than 
that ( h i )  in the upper regime. We can write 
down, as before, the general solution of 
(11.21) appropriate to each regime. Clearly for 
continuity at the boundary we must have 
A,p, 6 (and therefore X but not Q) the same 
in each regime. We still have two more 
arbitrary constants than before, but we have 
two additional “internal” boundary conditions 
since both the phase and amplitude (one 
complex number) of p and v, (normal velo- 
city) must be continuous at z = zo. Our 
upper boundary condition is now v, + o as 
z -+ 00 for it is clear from (11.24) that one of 
R,, R, increases and the other decreases 
exponentially with height. (The boundary 
condition ensures that all the perturbation 
functions decrease exponentially.) Finally, we 
obtain, as before, a relation between 1 and 
6. If we write: 

2 

I dU 
K dz O ’  

z c r = h , \ / 1 + 1 ~ 2 - -  z 

(33)  

then 
2 

p 2  = (I-k:) (zcx-tanli2a) - (a) 
(k, + tanh 2 a) 

(34) 
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replaces (11.28) while for the “steering level” 
as defined above: 

,=.(I+$) 2 

If we put h, = 00 (infinite static stability) 
equations (11.34) and (11.35) reduce to formulae 
appropriate to the “two rigid boundary” 
system and the disturbance is confined to the 
lower regime. As k, increases from zero the 
disturbance gradually extends into the upper 
regime but as there is always exponential 
decrease with height in the upper regime, 
provided k, < I, then, except near this limit, 
the actual conditions much above z = zo are 
quite uncritical. In many practical cases k, is 
nearer zero than unity and then the disturbance 
in the lower regime does not differ greatly 
from that of our original system (the limiting 
case). For a given value of k, we find as before 
that j3 is real only for sufficiently long waves 
(a sufficiently small) and for one particular 
wavelength /? (and therefore growth-rate) is a 
maximum. As k, increases from zero j3 de- 
creases slowly at first from its limiting value 
but vanishes when k, = I. For k, > I there 
are no unstable solutions. (It would appear 
to be a general result that for instabili of 
this type the Richardson number must Xave 
a minimum value within a certain finite region; 
the resulting disturbances then have their 
maximum amplitude in this region with 
exponential decrease in the surrounding re- 
gions. These conditions are satisfied in prac- 
tice as a general rule.) 

Similar calculations may be made for sys- 
tems of three (or more) horizontally stratified 
regimes. An easily investigated system, re- 
presenting the opposite extreme to the two- 
regime system discussed above, is that in 
which the static stability is relatively small 
within a layer which we take to be between 

z 
2 

levels z = f 0 and relatively large both 

above and below. The outer regimes we take 
(for simplicity) to be of indefinite extent. This 
system corresponds, for example, to a ba- 
roclinic cloud mass of very high base. For 
simplicity we take h = h, in each of the outer 
regimes, h = h, in the inner regime. Then 
with the same notation as before: 

(I -k y ) ( 2  a (coth 2 a+k,)-  (I -ky)} 
8 2  = - us 

(I + k: + 2 k, coth 2 a) 

(3 6)  

The general behaviour is similar to that of 
the two-regime system except that now the 
disturbance decreases exponentially in both 
directions awa from the inner regime. (For 

tions at the boundaries of the inner regime 
were independent.) Thus disturbances de- 
veloping on a high level cloud sheet, for 
example, would be unnoticed at ground level 
in their early stages. 

Table I gives values of a, j3 corresponding 
to the “dominant” disturbance of maximum 
growth-rate calculated for k; = 
of the change from cloud to unsaturateti: 
for the three systems discussed above. Note 
the relatively small decrease in j3 due to “losses” 
at “imperfectly rigid” boundaries. 

small values o r k, it is almost as if the condi- 

ty 

Table I 

The structure of the disturbances of the more 
complex systems may be studied in the same 
way as before. Figs. 2 and 3, to be interpreted 
as Fig. I, correspond to the two-regime and 
three-regime systems respectively. 

An interesting feature of the two-regime 
system a pears when we compute the displace- 
ment o P the internal boundary (the base of 
the change in lapse-rate) at z = zo due to the 
growing disturbance. This boundary (which 
might correspond roughly to the tropopause) 
is sucked down in the vicinity of the upper 
(i.e., at z = zo), pressure minimum and pushed 
up in the vicinity of the upper ressure maxi- 

as k, + 0, otherwise it is a close a proxima- 

expected if cyclonic vorticity were generated 
by a simple vertical “stretching” - but note 
that behaviour in the upper regime, e.g., the 
stratosphere, is consistent with this view) is 
in good agreement with observed behaviour. 

mum (the phase coincidence % ecomes exact 

tion). This result (opposite to t l? at to be 
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Fig. 2. Above: Phases. Below: Amplitudes. 

In the above we have considered only the 
case of uniform thermal wind, the changes in 
Richardson number being due to changes in 
static stability. The general case, when both 
thermal wind and static stabitity change, is 
much less simple mathematically though it 
could probably be tackled by numerical meth- 
ods. But from energy considerations there 
seems little doubt that the general behaviour 
of any system depends primarily on the 
distribution of Richardson number and much 
less on the way in which it is compounded. 

We have still only considered systems 
which are horizontally of infinite extent and 
although strongly baroclinic regimes are often 
of considerable longitudinal extent (in the 
direction of the thermal wind), they are sel- 
dom very broad. As a further step towards 
realism we consider a three-regime system in 
which the regimes are now side by side. For 
simplicity we commence with the case of 
motion between horizontal rigid boundaries 
which we. found previously to be a useful first 
approximation. We suppose the inner regime 

to occupy -0 < y < - and the outer re- 

gimes to be of indefinite extent. All three 

Y Yo 
2 2 

Z O  z0 regimes occupy -- < z < -. Once again 
2 2 

we suppose differences in Richardson number 
to be due solely to differences in static stability 

(consistent with a continuous temperature 
distribution if the stability reduction is due to 
cloud). We take h = h, in the inner regime, 
h = h, in each outer regime with I h, I < I h, I 
so that the inner regime corresponds, for 
example, to a baroclinic cloud mass. In pre- 
vious cases we found the only restriction on u 
was that it must be real, though the most 
interesting case (maximum growth-rate) was 
0 = 0. In the present instance we find simple 
solutions only if: 

h; (I +u;) = h i ( r  +u;)GH2 (37) 

and then Q = H X  has the same interpreta- 
tion everywhere. The boundary conditions at 

z = 5 3 are satisfied as in our first problem 

and then they are satisfied in all regimes 
simultaneously. The internal boundary con- 
ditions require continuity of p and v, (nor- 

2 

ma1 velocity) at y = f Y 2. (Since the winds 
2 

are roughly geostrophic these conditions are 
nearly equivalent - hence the “fit” must be 

Fig. 3 .  Above: Phases. Below: Amplitudes. 
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correct to a higher order in We shall 

suppose (and our solutions require) that u1 is 
real, u, purely imaginary, consistent with 

our  assumption that k = 2 < I. Then the 

boundary conditions at y = & m are satisfied 
(all perturbations decreasing exponentially) 
with appropriate (opposite) choice of roots 
& u, in the two outer regimes. In the inner 
re ime we take a linear combination of the 

and then have sufficient arbitrary constants to 
satisfy all the boundary conditions if, at the 
same time : 

$ *  ‘>  

h 
h, 

so P utions corresponding to f u, respectively 

i c2 
01 
_ _  - tan (+ y o )  

Since k; < I this equation always possesses at 
least one real root for I ul I. (If there is more 
than one we take the smallest - corresponding 
to maximum growth-rate.) For the growth- 
rate we have: 

K 6, = p’ - : 
h 2  

where p is defined by (11.28). Once againp’ is 
real, and the disturbance unstable, only within 
the range (11.30) and for one particular value 
of a growth-rate is a maximum. Since crl 
depends on 1 the “dominant” values of I a I 
and I I are slightly different from those given 
by (II. 32) - I cc I is somewhat greater and I /? I slightly smaller by an amount depending 

on & and on k,. The variation of /I’ with a as 

compared with the case of an infinite cloud- 
sheet (yo = m) is shown in Fig. 4 for a typical 

ZO 

I case in which k; = - . - - 1 . , (see 
10 ’ \/s Zo 

11. 5 ) .  

I::: I 

Fig. 4. Selection Curves. 

It will be observed that the “selectivity” 
(i.e. the sharpness of the maximum) is in- 
creased. As a numerical example we may 
compute the characteristic features of the 
dominant wave of the system to which 
Fig. 4 applies, assuming in addition K = 0.4 
hr-1 (lac. soo approximately) : fi2 = 11s (ty- 
pical for unsaturated air) : zo = 5 km : yo 

dU 
= I so km (height and width of cloud mass) : - 

dz 
= 10 hr-l. Then we derive: 

hi = 21; cc = 0.893; /?’ = 0.575; 0; = 1.333; 

and then : 

- 2  19.9 hr; L f - = 1,070 Km, (42) 
$1 iz 

so that the disturbance doubles its size in 
a proximately 14 hours. The growth-rate is 
sightly less than that sometimes observed 
since in practice the effective Richardson num- 
ber may be smaller than that assumed (and 
theii our approximations are not so good - 
but see below). But both growth-rate and 
wavelength are of the right order of magnitude 
for cyclone waves. On the other hand when zo 
is the height of the tropopause and the Richard- 
son number is not much less than that appro- 
priate to unsaturated air (only cloud masses 
comparable in size with the disturbance pro- 

(41) 

I 2 X  
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0 

u n w  

Fig. 5 .  Pressure-field and Cloud-mass Perturbation. 

duce a large reduction in effective Richardson 
number) we find that L is more than doubled 
(in a typical case we find L is of the order of 
4,000 Km) whik 6, is considerably reduced 

in a typical case- = 60 hr . These values 

are in good agreement with observed values 
in long waves. In general we find that growth- 
rate is intermediate between the values appro- 
priate to infinite sheets of Richardson number 
h, and h, respectively, approaching the former 
for very broad, the latter for very narrow 
“cloud belts’ ’ . 

The structure of the “dominant” disturbance 
has many interesting features which will be 
discussed only briefly. The vertical distribu- 
tion of phase and amplitude of the perturba- 
tion functions is exactly as in Fig. I, but the 
horizontal structure is of course more complex. 
The approximate pressure-perturbation pat- 

tern correct to zero order in - is shown in 

Fig. 5 .  
Apart from the changes of phase and ampli- 

tude indicated in Fig. I, the pattern is the same 
at all levels. For comparison with observation 
we must superpose the unperturbed pressure 
field. We then find that (exce t when U = 0) 

has attained a definite size (different at different 

) I ( 6,  

( h ’> 

closed centres are absent unti f the disturbance 

levels and perhaps never attained, especially 
at high levels, - but this question cannot be 
discussed on a theory of small perturbations, 
which applies only to the early stages of 
development). Since the winds are roughly 

geostrophc correct to zero order in- we 

may infer the approximate horizontal wind 
field from Fig. 5 .  But note that the trajectories 
are not even approximately along the isobars 
except at the steering level z = 0. Relative 
to the disturbance the air is blowing through 

, the east at low levels and the west 
at from, hgh  evels. The combined relative motion 
is associated with a deformation of the cloud 
mass. This deformation is shown below 
Fig. 5 (since it is “infinitesimal”), in correct 

phase for the level z = - 3 (corresponding to 

the earth’s surface). The phase varies with 
height and is the same as that of the entropy 
perturbation (warm tongue) at levels z = 0, 

& 2, the phase-difference elsewhere being 

very small. Clearly the cloud-mass corres- 
ponds to the frontal region of the growing 
cyclone and its displacement towards cold air 
to the boundary of the “warm sector”. It 
should be emphasised that we are concerned 
here only with the broad features of disturb- 
ances. Errors of detail are inevitable since 
actual initial systems are usually more com- 
plicated in structure than we have assumed. 
From this point of view it does not seem to 
matter very much whether or not the velocity 
field contains discontinuities (except when 
these are unusually large arid extensive) 
provided the smoothed fields are the same. 
Moreover sharp discontinuities observed in 
practice are often the result of rather than the 
prerequisite for development. When the 
theoretical fields are more accurately computed 

(correct to the first order in - , the maximum 

attainable with present a proximations) we 
find discontinuities of win[ pressure gradient, 
entropy developing along each surface of the 
cloud mass. This behaviour may be regarded as 
the realisation of a latent discontinuity - in 
effective static stability - between saturated 

( h ’> 

z 
2 

z 
2 

I 

h 



45 LONG WAVES AND CYCLONE WAVES 

and unsaturated air. These discontinuities are 
more complex in structure (and in some ways 
in better agreement with observation) than 
those at the lane surfaces ascribed to theoreti- 
cal “fronts’! Moreover the genesis of dis- 
continuity b development is consistent with 
the observedr “sharpening” of fronts during 
cyclogenesis. But a satisfactory theory of 
frontogenesis cannot be based on considera- 
tions of small disturbances and we must 
leave this aspect (from our oint of view a 

It is easy to combine the virtues (from the 
point of view of realism of the horizontally 

sidering the systems shown in cross-section in 
Fig. 6 .  The only difference as compared with 
the system last considered, is that in place of 
Fig. I, we use Figs. z and 3 respectively for 
the vertical variations of phase and amplitude 
provided that the conditions : 

matter of detailed structure) P or the present. 

and vertically “stratifie B. systems by con- 

(43) 

are satisfied. We then find that all the boundary 
conditions can be satisfied simultaneously. The 
condition (II. 43) is necessary for solutions of 
simple mathematical form but it has little 
physical significance since very little perturba- 
tion-energy is associated with the “corner” 
regimes. In fact when h2, is considerably smaller 
than the value of hz outside it is this alone 
(together with the dimensions of the cloud 
mass) which is the main determining factor 
of the features of the disturbance. 

Several refinements and extensions of the 
theory will not be discussed in detail here. 
Thus the solutions of (11. 17) correct to order 
I are easily determined. Applied to the i? 
first system considered they yield more precise 
formulae for growth-rate etc. It appears that 
serious errors do not result until h 2  approaches 
fairly close to unity. For h 2  < I a second 
type of instability (corresponding to “vertical 
overturning” - see below) becomes possible. 
This type of instabllit is associated with 

the vicinity of cold fronts, tropical cyclones 
etc.) and will be discussed elsewhere. Another 
extension is the calculation of second-order 

development on a sma r ler scale (motion in 

ig. 6. 6- and g-regime Systems (Vertical Section). 

perturbations i.e. correct to the second order 
of small quantities. We then obtain terms 
involving Yz i.e., second harmonic terms. 
Calculations are simple for the first system, 
corres onding to Fig. I. We find that the 

as between “high” and “low . At all levels 
the pressure troughs are accentuated and the 
ridges flattened, in good agreement with 
observed behaviour. In fact, correct to zero 

E Y  comp P ete perturbation is no Ion er s mmetrical 

I 
order in-, the phase-lines of the first and h 
second order perturbations of pressure coincide 
(for troughs) at all levels. We also obtain 
terms independent of Y, corresponding to 
“transport” phenomena. Thus for example 
the disturbances trans ort heat upwards and 
their final effect must \ e to increase the static 
stability of the system. (In this case of course 



E. T. E A D Y  64 

the same result is obtained from the integrated 
correlation of vz and v.) An important 
corollary is that since large-scale disturbances 
are always transporting heat upwards we must, 
for statistical balance, have net cooling of the 
upper troposphere by radiation. Independent 
calculations of radiation flux have led to the 
same conclusion. 

111. Long Wave Modifications 

In the previous analysis, in which we have 
neglected the variability of the Coriolis para- 
meter, we found that the disturbances move 
with the unperturbed current at the “steering 
level” which, in the case of symmetrical 
systems (Figs. I and 3)  is the middle level of 
the system. In the system to which Fig. 2 
applies the steering level is somewhat elevated, 
corresponding to a limited extension of the 
disturbance into the upper layer. If we apply 
the superposition (of uniform wind and cor- 
responding geostrophic pressure gradient) theo- 
rem referred to in the first section we obtain 
the law of “contour steeri~g” (not, as is often 
stated “thermal steering”) at the steering level. 
So far at least as direction of travel is concerned 
this is in good agreement with observation 
(though we have proved the result only for 
nascent disturbances). But this law applies 
only to disturbances on not too large a scale. 
As we shall see, the most important new 
feature arising when we take into account 
the variation of K with latitude is a modifica- 
tion in the steering law. 

For dealing with the more complicated 
problems in which we take into account the 
variability of the Coriolis parameter, or 
use a polar co-ordinate system, or are dealing 
with complicated boundary conditions, etc., 
it is convenient to reformulate the perturba- 
tion equations. This involves further approx- 
imations so that the solutions are valid only to 

zero order in - (on the other hand in long 

wave problems h 2  is much larger than in 
cyclone problems) and the calculations are not 
so easily extended to the second order of small 
quantities but the differential equations are of 
a simpler form, are better adapted to numerical 
work and the solutions still retain the essential 
features we are seeking to determine. We 

I 

h 

commence with a “standard” distribution 
eo (z), which may be the actual distribution in 
some central part of the region in which we 
are interested, and we shall suppose p o  (z) the 
corresponding pressure distribution. Let p’, e ‘ 
be the differences at any point from the “stan- 

I dard” values at the same level. Then - - g, 
Y Po 

I 

C- are both small compared with unity and 
e o  
normally in regions of strong thermal wind 
the former is much smaller than the latter. 
Hence approximately: 

for perturbations of sufficiently shallow sys- 

in the initial system the static stability and 
thermal wind are uniform we have for adia- 
batic motion (cf. II. 4): 

We have noted that the perturbation winds 

are, to zero order in - geostrophic. Then h’ 
I 

I 
replacing vy by ~ * 2 and differentiating: 

Keo 8 %  

neglecting once again the variation of log eo. 
Hence by the first of equations (11.4) and (11.6) : 

When h 2  is large the third of equations (11.4) 
approximates to : 
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47 
on substitution of the geostrophic winds. 
Combining (111. 4) and (111. 5) 

and this condition is certainly satisfied if: 

All the other perturbation functions are readily 
expressible in terms of p and using (111. 7) in 
place of (II. 7) we can obtain, correct only to 

zero order in -, the results of section II. 

Our present ap roximations are therefore 

made earlier. Now if we take into account 
the variability of K we have, in place of (III. 5) : 

I 

h 

consistent with, a P beit more drastic than those 

~d 
K dt - divHv = - -. (K + curlHv) = 

and then, in place of (11. 6) 

For solutions of the type (11. 8 and 11. 13) 
stuhed in the previous section (111.9) leads to 
the ordinary differential equation: 

where 

P C Q  = Ch 4- * X .  (11) 

From (111. 2)  and (111. 10) we obtain the re- 
lation : 

and in place of (III. 10) we may use: 

d2N dN Q (a- c) -2 - (2  Q- C) - - dQ dQ 
- ( Q - C ) ' N =  o (13) 

which of course reduces to (11. 23) when 
C = 0. (To our present approximation N and 
R are equivalent.) The general solutions of 
(III. 10) and (III. 13)  are expressible in terms of 
Whittaker functions but since we are inter- 
ested in functions of a complex variable 
evaluation of the solutions and determination 
of the dominant solution is in general a labo- 
rious process. If however, in order to discover 

dK the initial effect of the term involving - 

when the "correction" is not too large, i.e. for 
waves which are not too long, we assume 
I C I 4 I then (III. 13) approximates to: 

dY 

(where No corresponds to C = o), which 
is easily solved by variation of parameters 
(the L. H. S .  is the same as in 11. 23), the 
solutions involving exponential integrals. If 
we consider now the first initial system (two 
rigid boundaries) and compare our solutions 
for C small but non-vanishing with our 
original solutions for C = o we find that the 
dominant wavelength and the corresponding 
value of 6, are unaltered, but that we obtain 
an additional term in the real part of the wave- 
velocity, corresponding to a lowering of the 
steering-level, given by: 

a formula differing only by a numerical factor 
from that applicable to (hypothetical) baro- 
tropic waves. The formula appears to be in 
reasonably good agreement with observation 
in middle-hgh latitudes (poleward of 45' 
lat.) where the dominant wavelength is 
typically about 4,000 Km (though we have 
proved the result only for growing waves). 
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The steering-level corresponds roughly with 
minimum amplitude of the pressure perturba- 
tion (cf. Fig. 2) and the present lowering of 
the steering-level is associated with an increase 
of perturbation amplitude at high levels 
(i.e., towards the tropopause) and a decrease 
at low levels. That long waves are more intense 
at high as compared with low levels is of 
course well known. 

We have observed that the decrease of 
mean density with height involves a “distor- 
tion” which is most serious in the case of deep 
waves such as long waves. An approximation 
to the modifications involved is obtained by 
replacing the first of equations (11.4) by: 

av, I d i w v  + - - - - v, = o 
ar zc 

(16) 

where 

Then in place of (11.23) we obtain finally: 

- t m  Q--2R = O  (IS) [I:: 1 
where 

(cf. II. 29, II. 5 and II. 2). Once again we shall 
consider the initial form of the “correction” 
when it is small, i.e. when zo is appreciably 
less than 1.6 zc. Making the substitution: 

(20) 

and neglecting m2 we get in place of (111.18): 

Using once again the method of variation of 
parameters we obtain the general solution of 
(111.21) and can study the modifications resulting 
from small but non-vanishing m as compared 
with our original solutions when m = 0. As 

above, when we were concerned with the 

effectof -, we find that the formulae for 
dK 
dY 

dominant wavelength and growth-rate are 
unaffected but there is an additional term in 
the real part of the wave-velocity. Expressed 
in terms of the steering-level we find that the 
latter is depressed by an amount - Sz where: 

2 0  

Z C  
Even when, as is the case in practice, - is 

comparable with unity, and the correction is 
rather rough, this depression of the steering- 
level due to decrease of density with height is 
much smaller, for long waves, than that due 
to variation of the Coriolis parameter. To our 
present approximations these effects are of 
course additive. We may note that the factor 

-1 Q I 
e in (III. 20) is simply multiplied by a 

(complex) constant. Thus apart from the 
difference in behaviour of the amplitudes of 
perturbations which are functions of R’ as 
compared with those of the R of (11. 23), a 
relatively minor difference, we find that 
perturbation amplitudes are multiplied by 

corresponding to increase in relative 

amplitude with height (and, to this extent, 
constancy of wave-energy density) and further 
accentuating the feature, already noted above, 
that long wave amplitude increases (on the 
whole) with height. Of course the correc- 
tions (111. 15) and (111. 22) apply to cyclone 
waves as well as long waves. But since both 
corrections are proportional to the square 
of the wavelength they can usually be neglected 
for practical purposes in the former case. 

For practical application we have identified 
z,, for Iong waves as the height of the tro- 
popause since the mean value of hz over a 
considerable depth of the stratosphere is nor- 
mally considerably larger, in significant re- 
gions, than in the troposphere. For a closer 
approximation we may study a system, similar 
to that to which Fig. 2 applies, in which the 
disturbance extends (but with exponential 

m 

v e o  

I 

G 



LONG WAVES AND CYCLONE WAVES 49 

decrease with height) into the stratosphere. 
We cannot immediately apply our previous 

results since the sign of - in the upper 

regime is reversed and the internal boundary 
(ix., the tropopause) is no longer horizontal 
so that a precise mathematical formulation 
leads to a more complicated problem. Ne- 
vertheless it is easy to see that the two cases 
are not very different (and incidentally pro- 
vide confirmatory evidence that the essential 
characteristics of a system depend on the 
Richardson number rather than its component 
elements). For the solutions R,, R2 (equation 
II. 24) are simply interchanged (h replaced by 

- h) when - is reversed. In order to satisfy 

the boundary conditions at z = ~3 we have 
to choose the same solution (i.e., that which 
decreases with height) as before. We shall 
suppose the change in h2 at the tropopause 
large (k, small) so that decrease in the strato- 
sphere is rapid and most of the wave-energy 
in this regime concentrated just above the 
tropopause. The distribution of c u r b  in the 
lower regime, and in particular at the tro- 
popause, cannot differ much from the limiting 
case (Fig. I - cf. Fig. 2). Since there are no 
discontinuities of velocity in our initial system 
we find that curlHv must be continuous (at 

least to zero order in --, the winds being 

roughly geostrophic) at the tropopause. Hence 
curlHv in the lower stratosphere is not much 

altered when - is reversed. And just above 

the tropopause U is only slightly reduced by 

this reversal. Hence - , which is determined 

dU 
dz 

du 
dz 

I 

h 

dU . 
dz 

av, 
az 

to this order of accuracy, by U- + - ( :* ; t )  
curlHv is not much altered and this is consistent 
with our choice of R,  or R ,  corresponding 
to va decreasing. In Fig. 2 both vy and v, are 
continuous at the internal boundary, the result- 
ant velocity having a slope smaller than that 
of the isentropic surfaces in the lower regime 
but reater than that in the upper regime and 
pro B ucing the 180’ phase change in rp. When 
4-903101 

in the stratosphere is reversed the slope of 
dz 
the isentropic surfaces there is reversed but 
there is no qualitative (and only a relatively 
small quantitative) change in the above 
description. In fact in the significant region 
(i.e., just above the tropopause) we can reverse 

dU 
dz 

the sign of -and our original solution (Fig. 2) 

is still a rough approximation to the required 
solution. Alternatively we may imagine the 

dU 
dz 

stratospheric value of - changing gradually 

through zero. The general form of the solu- 
tion in the stratos here does not change 
appreciably, only t e scale, which depends 

on hz, not on the sign of - . We may therefore 

still use Fig. 2 as an approximate description 
in the more realistic case. In articular we 

raising of the steering-level. It is a convenient 
accident that in the case of typical long waves 
this correction very roughly cancels the correc- 
tion for variation of eo (depression of steering- 
level) so that we may obtain quite accurate 
steering velocities by omitting both corrections. 

When discussing the system to which Fig. 2 
applies we noted the sucking down of the 
internal boundary in the vicinity of the u per 

up in the vicinity of the upper ridge. We may 
now ap ly this result directly to the tropopause 
when t R ere is long wave development. Apart 
from the agreement with observation so far 
as the tropopause itself is concerned we may 
note that we have here a mechanism (“advec- 

“stretching”) to account quantitat- 
ively ?On,’ Plus or observed changes in ozone measure- 
ments by purely dynamical considerations. 

dU 
dz 

R 

find that the effect of this re P inement is a 

trough (or low pressure centre) and its pus rl ing 

IV. Energy Analysis 

The above account is based on obtaining 
complete solutions of the perturbation equa- 
tions for certain simple initial systems thereby 
proving the systems unstable and determining 
the manner of breakdown. It is instructive to 
consider an alternative analysis in which we 
merely show the possibility of instability. 
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Nevertheless this morc limited analysis makes 
clear the general nature of the process and 
makes possiblc an estimate of maximum 
growth rate for disturbances (strictly it deter- 
mines an absolute upper limit to growth-rate) 
of a wider range of initial systems. 

W e  commence with a system (such as one 
of those with which we have been concerned) 
initially in equilibrium and imagine displace- 
ments dx, 6y ,  6z at each point, in general 
functions of x, y,  z ,  t .  For simplicity we con- 
sider the “incompressible” case (or analogue). 
The loss in potential energy is computed 
correct to the second order of small quanti- 
ties and equated to the gain in kinetic energy, 
i.e., the kinetic energy associated with a 
growing disturbance. If we confine our atten- 
tion to disturbances of “constant shape” in 
which all the displacements contain the factor 
e41 then the kinetic energy involves terms 
such as 8;  * dy2 etc. In this way we obtain 
8: as a function of the displacements and, 
making use of the constraints implied by the 
continuity equation and one of the momentum 
equations, we determine an upper limit to Sf. 
If this upper limit is positive we infer that the 
system is unstable “potentially”, i.e., subject 
to compatibility with other constraints not 
considered. (In all the cases examincd we are 
able to find physically possible boundary con- 
ditions such that this upper limiting growth- 
rate is actually attained within an arbitrarily 
small amount. Other boundary conditions 
yield smaller, but in general comparable, 
maximum growth-rates. It appears to bc a 
general rule that “potentially” unstable systems 
are actually so, a feature which may be asso- 
ciated with the infinitudc of degrees of freedom 
of fluid motion.) Apart from the change in 
sign of 4.; the method is essentially the same 
as that used by RAYLEIGH to determine mi- 
nimum frequcncies of oscillation. 

Applied ;o a barotropic system with uni- 
form velocity this analysis gives an upper 
limit to thc initial rate of growth of a Benard 
cell : 

6 ;  5 - g B  

Growth-rate is a maximum when dx is every- 
where large compared with dx, By and there 
is instability only when B < 0. 

Now consider a baroclinic system. Potential 

energy is released by a process of “overturning” 
(we consider the initial stage of this process). 
It will be convenient to consider separately 
“vertical overturning” in a plane at right 
angles to the thermal wind and “quasi-hori- 
zontal overturning” in a slo ing plane parallel 

ponds to the disturbances with which we have 
hitherto been concerned and it will be con- 
venient to take this case first. Assuming that 
the disturbances are eriodic in the direction 
of the thermal winB we obtain finally the 
result: 

to the thermal wind. The s atter case corres- 

if overturning takes place in the xs plane (the 
s axis being in the yz plane) and g, is the 
component of gravity along the s-axis. By 
hypothesis the isentropic surfaces are not 
horizontal and if cc is their angle of slope 
(acute angle) we find that 8; is positive if 
the s-axis slopes at a smaller angle. If cc is small 
we find that growth-rate is a maximum when 

cc 
2 

the s-axis has a slope - and then: 

I A2 
i g  (3) 

and from thc definition (11. 12) this is the 
same as: 

(4) 

Our complete solution (II. 3 I) therefore cor- 
responds to about 62 yo efficiency. The re- 
duction is of coursc due to the constraints of 
thc rigid boundaries which prevent all the 
fluid particlcs being displaced in the optimum 
direction. (But it is easily verified that in the 
central region, near z = 0, the displacements 
are nearly in the optimum direction, i.e., 
along the bisector of the angle between the 
isentropic surfaces and the horizontal.) 

The analogy between (IV. 2)  and (IV. I) is 
evident - we are here concerned with a kind 
of “convection” on a large scale, the main 
displacements being not vertical but in the 
direction of the s-axis. (Isentropic charts 
sometimes suggest this kind of picture.) 
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In the above we have supposed U in- 
dependent of y as in the systems for which we 
have obtained complete solutions. W e  may 
attempt to generalise the above analysis by con- 
sidering a system in which initially V, = U(z )  + 
+ W(y) but for solutions periodic in the 
x-direction we have to abandon the assump- 
tion of “constant shape”. (We are confronted 
with difficulties similar to those arising in a 
study of the stability of Couette flow). On  the 
other hand it is easy to study the effect of 
vertical overturning (in the yz plane) in such 
a system. W e  obtain finally: 

and if we suppose (as is usually the case): 

AW B > o : - < K ;  
dY 

the condition for “potential” instability is : 

(gA)* >gB * K K -  - ( :;> (7) 

which is the same a?: 

I > (I-;:) 

Therc is instability for any Richardson number 

if - > K, i.c., for an anticyclonic wind shear dW 
dY 

greater than K, a well-known result but 
probably not one of very great importance 
from a practical point of view. On the other 

AW hand when - 4 K, (IV. 8) becomes approx- 
dY 

imately hz < I .  Thus whereas the atmosphere 
is normally unstable from the point of view 
of “quasi-horizontal overturning” it is only 
so in special circumstances from the point of 
view of “vertical overturning”. W e  should 
therefore expect the former process to be 
dominant in atmospheric development and 

observation appears to confirm this result at 
least in middle and h g h  latitudes. (In low 
latitudes any kind of development is slow 
unless the static stability is small or negative.) 
Now the overturning process is an irre- 
versible one and"quasi-horizontal overturning" 
leads to interchange between warm air at low 
levels and cold air at high levels. As noted 
earlier heat is transported rrpwards, statistically 
balancing radiative cooling a t  high levels. At 
the same time heat is normally transported 
polewards (the main trans ort is probably 
associated with long waves7 to balance sca- 
tistically net radiative cooling in high la- 
titudes. 

V. The Ultimate Limitations of Weather 
Forecasting 

We may infer from the above analysis (in 
so far as the atmosphere is always, on a large 
scale, baroclinic) that atmospheric motion is 
normally unstable. The fact that practical 
systems are usually more complicated than 
those studied does not affect the generality 
of this result. In fact we have in practice what 
may legitimately be described as “fully de- 
veloped turbulence” of a particular kind, the 
turbulent motion being maintained against 
frictional dissipation by the growth, from time 
to time, of disturbances of the kind we have 
been studying. (The only essential difference 
between this large-scale turbulence and that 
occurring on a smaller scale is the manner in 
which energy is supplicd to the turbulent 
disturbances). Assuming sufficient analytical 
skill, what arc the possibilities of forecasting 
for such a system? Suppose we attempt to 
formulate the problem as one of determining 
a final (forecast) state from a given initial one. 
The initial state is in practice “given” only 
within a certain margin of error. For con- 
crcteness let us consider pressure at a given 
point, known within a margin Sp. Let 6, be 
the maximum growth-rate of unstable disturb- 
ances of the system. Then in the final (fore- 
cast) state we can guarantee pressure correct 
only within a margin Sp . e6if since distur- 
bances below the margin of error initially 
(and therefore completely unknown) will have 
attained this size. It is clear that “guaranteed” 
forecasts are possible (even in theory) ody 
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for intervals less than t ,  where t, is of the order 

of -, for beyond this time the margin of 

uncertainty is so large as to make such “gua- 
ranteed” information valueless. Reduction of 
initial error-margin makes possible only a 
very limited extension of time interval. For 
larger time intervals we must reformulate our 
problem . 

Although we cannot, with complete cer- 
tainty, say anything about long-term develop 

I 

6, 

ments (I + t) it does not follow that all 

possible developments are equally probable. 
On  the contrary we may infer that prob- 
abilities are very unequally distributed (and 
therefore that information of this kind may be, 
from a practical point of view, almost as good 
as “guaranteed” information). As an example 
consider a set of unstable disturbances of 
various growth-rates. So long as the determin- 
ing (perturbation) equations are substantially 
linear it is clear that the relative importance of 
the disturbance of maximum growth-rate 
increases with time i.e., any disturbance 
composed of components of varying growth- 
rates will tend towards the size, structure and 
growth-rate of the “dominant” wave by a 
process of “natural selection”. W e  may gener- 
alise this result by including stable components 
in the initial perturbation and there can be 
little doubt that the result is true of almost 
any arbitrary disturbance. Of course in practice 
conditions are more complicated, the concept 
of an initial system is less clear-cut and the 
dominant disturbance is a relatively slowly 
varying function of the time, quite apart from 
the modifications which ensue when the 
disturbance becomes “finite” and the go- 
verning equations non-linear. (Moreover we 
may choose to regard certain initial irregularities 

as “finite” perturbations of a larger system.) 
Nevertheless the reality of the selection process 
is made clear every day when we see recognis- 
able, well-known patterns develo ing “as if 

resemble in size, structure and behaviour the 
ideal disturbances we have discussed theore- 
tically. 

The above is no more than a prelude to 
the rather formidable task facing theoretical 
meteorology - that of discovering the nature 
of and determining quantitavely all the fore- 
castable regularities of a “permanently un- 
stable” (i.e., permanently turbulent) system. 
W e  can be certain that these regularities are 
necessarily statistical and to this extent our 
technique must resemble statistical mechanics. 
But we do not yet know enough about the 
( 4  atoms” (the life-histories of disturbances) 
nor are we concerned with “atoms” with a 
clear-cut individuality. Clearly there are 
difficulties from the point of view of formula- 
tion and it is by no means clear what kind of 
problem we ought to attempt to solve. But 
these difficulties are inherent in the study of 
any kind of turbulent motion and perhaps in 
the study of irreversible processes (other than 
isolated ones) in general. 

Much of the above formed the subject of a 
series of colloquia given, at the kind invitation 
of Profs. J. BJERKNES and C. L. GODSKE, at 
the Geofysisk Institutt, Bergen in April, 1947. 
A more detailed treatment of cyclone theory 
was given in a doctoral thesis (unpublished: 
London, 1948). The literature on cyclone and 
long wave theory is extensive and the writer 
would like to be excused the compilation of 
a list of references. He would however like 
to refer to an independent analysis by J. G. 
CHARNEY (Journal of Meteorology, Vol. 4, 
No. 5, Oct., 1947) which in many (but not 
all) respects is consistent with his own. 

from nowhere” which more or  P ess closely 


